Fifty Years of Laser Science

Y. Ron Shen Physics Department University of California at Berkeley

Image by Stock xching. Composite by Marko Barulan

Light Amplification by Stimulated Emission of Radiation

Stimulated emission rate ∞ Number of photons present in the emission mode (Einstein, 1916)

Invention of Maser

C.H. Townes, 1951

Early Comments of Eminent Scientists on Townes' Maser Wrok

Rabi and Kusch:

You should stop the work you are doing. It isn't going to work. You are wasting money. Just stop.

Bohr:

But this is not possible.

Von Neumann:

That can't be right.

Invention of Laser (Open Cavity) (Schawlow and Townes, 1958)

Light travels round and round in the cavity. The effective length for stimulated emission increases drastically → High laser intensity.

Ruby Laser (Maiman, May 16, 1960)

Lasers come in all forms and colors:

Gas lasers Solid-state lasers Plastic lasers Edible lasers Liquid lasers Liquid crystal lasers Nano lasers Drinkable lasers

Lasing frequency ranges from far-infrared to X-ray

How does a laser beam differ from an ordinary light beam?

Directionality: $\theta_{dif} \sim 0.01^{\circ}$ for 1-cm diffraction-limited beam, Smallest focal diameter ~ $\lambda \sim 1 \mu m$.

Power:CW laser > 100KWPulse laser > 10^{14} W (peak)Maximum intensity at focus ~ 10^{26} W/m².

Minimum Pulsewidth: ~ 5×10^{-15} sec (1.5 µm pulse length) $\Rightarrow < 10^{-15}$ sec (<300 nm pulse length)

Spectral Purity: $\frac{\Delta v}{v} \sim \frac{1 \text{ Hz}}{10^{15} \text{ Hz}} = 10^{-15}$

Tunability: Far-IR \rightarrow visible \rightarrow UV \rightarrow soft X-ray

Laser Applications

Entertainment:

CD player, Video player, Laser art show Medical Care:

Laser diagnosis, Laser surgery

Technology:

Machining, Welding, Alignment Optics communications (Kao, Nobel Prize, 2009) Ranging (GPS) and sensing laser Weaponry

Science:

Laser Surgery (Face Lifting)

Laser Ranging

╢

Laser Weapon

58-cm Diameter High Energy Laser Beam (TRW, 2002)

Star War

Laser Applications

Entertainment:

CD player, Video player, Laser art show Medical Care:

Laser diagnosis, Laser surgery

Technology:

Machining, Welding, Alignment Optics communications (Kao, Nobel Prize, 2009) Ranging (GPS) and sensing laser Weaponry

Science:

Laser-Related Nobel Prizes

Basov, Prokhorov, Townes (1964): Invention of maser Gabor (1971): Invention of halography Penzias, Wilson (1978): Discovery of 3K cosmic background radiation Bloembergen, Schawlow (1980): Development of laser spectroscopy Ramsey (1989): Development of precision atomic spectroscopy Chu, Cohen-Tannoudji, Phillips (1997): Development of laser cooling Zewail (1999): Development of femtosecond laser chemistry Alferov, Kroemer (2002): Development of semiconductor heterojunction laser Cornell, Wieman, Ketterle (2001): Discovery of Bose-Einstein condensation Glauber, Hall, Hansch (2006): Development of quantum optics; Invention of frequency combs for precision spectroxcopy Shimomura, Chalfie, Tsien (2008): Discovery and development of green fluorescent proteins

Kao (2009): Achievement concerning fibers for optics communications

Birth of Nonlinear Optics: Second Harmonic Generation (*Franken, 1961*)

Nonlinear Optics: Wave Mixing

Theoretical Foundation (Bloembergen et al, 1962)

$$\underbrace{\begin{array}{c} \omega_{1}, k_{1} \\ \omega_{2}, \vec{k}_{2} \end{array}}^{\omega_{1}, k_{1}} \underbrace{\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \end{array}}^{\omega_{1}, k_{1}} \underbrace{\begin{array}{c} \vec{k}_{1} + \vec{k}_{2} \\ \omega_{1} + \omega_{2} \end{array}}^{\omega_{1} + \omega_{2}}$$

 $\vec{p}(\vec{E}) = \vec{\alpha}^{(1)} \cdot \vec{E} + \vec{\alpha}^{(2)} : \vec{E}\vec{E} + \vec{\alpha}^{(3)} : \vec{E}\vec{E}\vec{E} + ---$

Nonlinear response becomes important when $E(\sim 1 \text{ KV/cm})$ is sufficiently strong \Rightarrow wave mixing.

Wave Mixing for Frequency Conversion

SFG

Tunable Coherent light Source from NLO spans from sub-THz to soft X-ray

Self-Focused Filaments in Air

Light Bullet:

Laser pulse of 10⁻¹³ sec or 30 µm in width propagates in a straight channel.

Adaptive Optics (Rubber Mirror)

Canada-France Hawaii Telescope with and without Adaptive Optics

Adaptive Optical Microscopy

Ji, Milkid, Betzig (2010)

Laser Spectroscopy

Flourished with advances of nonlinear optics and tunable lasers, and rejuvenated the field of atomic and molecular sciences

Bloembergen, Schawlow (Nobel, 1980)

Lamb, Ramsey, Hansch, Cohen-Tannouji, Hall, Chu, Zewail

Laser Spectroscopy

Ultrahigh Spectral Resolution-f/ $\Delta f \sim 10^{15}$ Absolute Frequency of H(1S \rightarrow 2S)= 2,466,061,413,187,103(±49) HzRydberg Constant $R_{\infty} = 10973731.568639(\pm 91) \text{ cm}^{-1}$ Are fundamental constants really constant?

Ultrahigh Sensitivity

Selective detection of single atoms and molecules

Ultrahigh Time Resolution Study of ultrafast dynamics (<10⁻¹⁵ sec)

Ultrahigh spatial resolution Microscopic resolution beyond diffraction limit

Two-Photon-Excited Fluorescence: Confocal microscopy

Tsien: Green fluorescent protein (Nobel, 2008)

Hansch: F=1 to $F^{-}=1$ hyperfine component of 1S–2S transition of H with a resolution of 1.4x10¹⁴.

Laser Cooling and Trapping of Atoms

Photon momentum:

 $hc/\lambda \sim 1.3 x 10^{-27}$ Kg-m/sec

Atom momentum: $mv \sim 10^{-23}$ Kg-m/sec $h\upsilon(\vec{k})$

It takes absorption/emission of $\sim 10^4$ photons or $\sim 100 \ \mu s$ to reduce the atomic velocity v ~ 0 .

Optical Molasses

Six orthogonal beams trap the atoms with $v\sim0$ or a temperature $T \sim 1 \ \mu K$

Laser Molasses (S. Chu, Sci. Am. 174, 71(1992)

Bose-Einstein Condensation

- Atoms cooled by laser can be further cooled by evaporation to ~ 10 nK.
- For a Na atom at T ~ 100 nK, it has a de Brogile wavelength $\lambda_{dB} \sim 1 \mu m$. Each atom appears as a wave packet.
- When wave packets overlap, the atoms form a single giant wave packet, and have the coherent wave character like a laser beam.

Detection of Single Atoms

- Nearly instantaneous excitation by laser
- Fluorescence lifetime: 10⁻⁸ sec
- Excitation Emission cycle: 10⁻⁸ sec
- # Photons emitted by an atom: $\sim 10^8$ /sec (easily detectable by a photodetector)
Fluorescent Detection of Single Biological Molecules

Selective Detection of Single atoms and Molecules

Applications

Studies of rare atoms and particles (nuclear physics) Studies of reaction dynamics (chemical physics) Dating (astrophysics, geophysics, archeology, etc.) Fluorescence labeling, two-photon confocal microscopy (biology) Isotope separation

Can Nonlinear Optical Effects be Observed at Single Photon Levels?

Single Photon in a confined space (1 µm³):

Energy Density = $|\mathbf{E}|^2/2$ = $h\omega/V \sim 1 \text{ erg/cm}^3$

|E| ~ 1 KeV/cm

Such a field is strong enough to induce observable nonlinear optical effects. For example, the optical Stark shift can be appreciable near resonance.

Single Photon and Single Atom in a Microcavity (Kimble)

Experimental Observation

A. Boca et al, PRL 93, 233603 (2004)

Coulomb Blockade

If an electron sits on a quantum dot (nanoparticle), its Coulomb potential is strong enough to repel another electron trying to get onto the dot.

1

Photon Blockade

The existence of one photon in the cavity prevents another photon from entering the cavity.

.Birnbaum et al, Nature 436, 454(2004).

Stroboscope

Photographs moving bodies intermittently by illuminating the object with brilliant flashes.

Inventors: E. Muybridge, Nature 19, 517 (1878) H.E. Egerton, MIT, (1926-31)

•

Ultrafast Spectroscopy

How long does it take for a crystal to melt?

Limit of time resolution: ~10⁻¹⁶ sec

Applications of Ultrafast Spectroscopy

- Gas Phases: Energy transfer, Reaction dynamics, femtosecond chemistry (Zewail).
- Condensed Phases:
 - Liquid: electron solvation, proton transfer

Solid: relaxation of excitations, carrier dynamics, spin dynamics, surface dynamics

Biological molecules and systems

Frequency Comb (2005 Nobel)

Characteristics of Frequency

cw series of periodic femtosecond pulses

A(τ)=A(τ +T) with T ~ 10 ns

- Well-defined optical field $E(t)=A(t)\cos(\omega t + \varphi)$
- Millions of spikes sharp spectral lines with a spectral width of a few KHz to few Hz
- Overall bandwidth extended over ~2eV, covering the entire visible range Extension into uv and IR possible.

High-Intensity Femto-second Pulsed Lasers

Pulsed Energy:1 mJ - 1 JPulse Width:5 fs

Focused Peak Intensity: 10^{14} - 10^{25} W/m² (for focal spot size of 10 μ m²- 1 cm²)

Table Top Terawatt (T³) Laser: $0.1 \text{ J}/100 \text{ fs} - 1 \text{ J}/10 \text{ fs} \sim 10^{12} - 10^{14} \text{ Watts}$

Extraordinarily Strong NLO Effects

- High-order nonlinear optics
 - High-field laser physics

Mechanism for XUV Generation

Generation of Attosecond Soft X-ray Pulses

Allows probing of electron dynamics and related phenomena

High-Order Harmonic Generation

High Harmonic Generation

 $\hbar\omega_{cutoff} = I_p + 3e^2 E^2 / 4m\omega^2$

High-Intensity Laser Physics

Corresponding to a laser intensity of 10²⁵ W/m²,

 $E = 6x10^{13} \text{ v/m}$

Acceleration for an electron:

 $a = eE/m \sim 3x10^{23} g$

 $a\Delta t \sim (3x10^{23} \text{ g})(10^{-15}) > c$ Electron becomes relativistic.

Photo-induced Nuclear Reactions:

Laser irradiation of target $\Rightarrow\Rightarrow$ High-energy electrons $\Rightarrow\Rightarrow$ Emission of γ -ray $\Rightarrow\Rightarrow$ Nuclear fission (e.g., U²³⁸) [PRL 84, 899, 903 (2000)]

Self-Amplified Spontaneous Emission Free Electron Laser (SASE-FEL)

111

The Ultimate Flash Photograph

Chapman et al: "Femtosecond Diffractive Imaging with a Soft X-Ray Free Electron Laser" Nature Physics (on line, Nov., 2006)

Laser Fusion (Inertial Confinement)

 $D + T \longrightarrow He(3.5 \text{ MeV}) + Neutron(14 \text{ MeV})$

Ignition occurs if $T > 10^8 \text{ K}$, (Density)(Time) >10¹⁴ sec/cm³

Target Chamber

Implosion & Heating

Burning

U.S. National Ignition Facility (Largest Laser Project in the World)

1–2 MJ/pulse (20 ns pulses)
192 beams
6.4 KJ/beam (10.4 KJ/beam)

Cost: >\$3.8 billions

Completion: Completion, 2008 after Year 2016, 700 shots per year

Laser Ignition

Future Must Be Bright

Duguay, Hansen, IEEE JQE 7, 37 (1971)

Laser Spectroscopy

Bloembergen, Schawlow (Nobel, 1980)

Lamb, Ramsey, Hansch, Cohen-Tannouji, Hall, Chu

- High intensity \Rightarrow better S/N
- Narrow linewidth \Rightarrow better spectral resolution
- Diffraction limit beam \Rightarrow better resolution in microscopy
- Narrow pulse width ⇒ ultrahigh temporal resolution in dynamic studies
- \Rightarrow New laser spectroscopic techniques
 - [°] Probing material properties not accessible earlier
 - ° New areas of research

After quadratically adding a systematic error of 23 Hz, the frequency of the F=1 to F'=1 hyperfine component of the 1S–2S transition obtained in 2003 isThe uncertainty of 1.4 parts in 1014 is only slightly improved over that of the 1999 resultHere, we have added a pressure shift of 10 Hz that had not been included in the 1999 analysis and a systematic error of 28 Hz. However, we now have two independent measurements of this important transition which agree within their error limits. The difference of (-29±57) Hz in 44 months corresponds to a drift of the 1S–2S frequency relative to the caesium frequency standard of (-3.2±6.3)×10–15 per year, consistent with a zero drift. **3. Are the fundamental constants constant?**

Boson and Fermion Condensates

Bose-Einstein condensation occurs when $(N/V)\lambda^3 = 2.612$ at $T = T_c$, $\lambda = h/p$, $p = (2\pi MkT)^{\frac{1}{2}}$
Laser Cooling of Atoms and Molecules

Kerr Self-Mode-Locking of Ti:Sapphire Lasers: Generation of Continuous fsec Pulses

High-Order NLO

- Infrared multiphoton excitation and dissociation of molecules
- Multi-photon ionization Above threshold ionization Optical-field-induced tunneling
- High-harmonic generation

Soft X-ray coherent light source Attosecond pulse generation Phase-matching in hollow waveguides Attosecond electron dynamics

• Laser-induced plasmas: Point X-ray sources

Generation of Attosecond Soft Xray Pulses

Mapping Field of A Femtosecond Light Pulse

Current Hot Topics in NLO

- Attosecond electron dynamics
- High-field physics
- NLO with frequency combs
 Precision spectroscopy
- NLO of cold atoms and molecules
- X-ray nonlinear optics

High-Field Laser Physics

A 10-TW (100 mJ/10 fs) laser pulse, focused to a 10 $\,$ um spot, has an intensity of $\,10^{19}$ W/cm^{2} ,creates a pondermotive potential for electrons

$$U = \frac{e^2}{2mc^2} A^2 = \frac{e^2}{2m\omega^2} E^2$$

~1 MeV at 10¹⁹ W/cm²

compared to 0.5 MeV for the rest mass of electrons

Electron acceleration: $a = eE/m \sim 5x10^{20}g$

$$v = at/2 \rightarrow c$$
 in 10 fs

- \Rightarrow Relativistic electron dynamics in laser-induced plasmas
- \Rightarrow Laser particle accelerator

Photo-Induced Nuclear Reactions

Laser irradiation of target

- (10¹⁹-10²⁰ W/cm²)
- $\Rightarrow\Rightarrow$ High-energy electrons
- $\Rightarrow\Rightarrow$ High-energy photons
- $\Rightarrow\Rightarrow$ Nuclear fission (U²³⁸)

[PRL 84, 899, 903 (2000)]

Laser Fusion

