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Abstract

Geodesics in plane background gravitational wave is solved in order to understand how photon

moves with gravitational waves. Coupling of electromagnetic waves, which is another interpretation

of light, and curvature of spacetime is also calculated using perturbation method but it is still con-

troversial about its correctness. Other methods of understanding the interaction between light and

gravitational waves are discussed. Note that this is only an intermediate report of the project.

1 Introduction

In 2016, LIGO detected the signal of gravitational wave (GW), which was produced by binary black holes

merger(Abbott et al. 2016). This was the first time humans ever detected GW directly. In 2017, LIGO

detected another signal of GW produced by binary neutron stars merger (Abbott et al., 2017). What

is more interesting is the detection of gamma ray burst signal from the same event, which ignites the

field of multi-messenger astronomy. Possible interaction between gamma ray burst and GW from the

same source is one of the motivation of this project. This project is more important because of the use

of pulsar timing array (PTA) for GW detection. This method is important because it can detect GW

in the frequency between 10−9 and 10−7Hz (Moore, Taylor & Gair, 2015) which can be hardly detected

using interferometer like LIGO. Before PTA works, we need to understand very well how GW affect the

propagation of light.

In this report, the geodesics of photon in plane GW background is solved in order to have a brief

feeling about the interaction between photon and GW. For your interest, a controversial method of

electromagnetic field-GW curvature coupling is also worked out. I did not guarantee the correctness of

any physical meaning of the result. The result would be interesting if it is correct to certain extent, so I

want to show the result anyway. Most of the formulations can be found in [4].

2 Gravitational waves

For a GW traveling in flat spacetime, the metric is given by

gµν = ηµν + hµν (2.1)
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,where ηµν = diag(−1, 1, 1, 1) is the Minkowski metric and hµν is the perturbation of spacetime due to

GW. Plane GW of the following form is considered

h11 = h+ cos[k+(z − t) + φ1], h22 = −h+ cos[k+(z − t) + φ1] (2.2)

h12 = h21 = h× cos[k×(z − t) + φ2] (2.3)

, hµν is zero otherwise. GW of this form represents a z-propagating GW with two polarization mixed.

Under the scheme of linearised general relativity, GWs obey the rule of superposition. Therefore, it is valid

that the two polarizations are with different amplitude, frequency and phase. The above assumptions

of GW are only valid when dealing with GW far away from the source, which means h+ and h× are

extremely small. For instance, on Earth, we usually detect GW of amplitude ∼ 10−21.

3 Formulations

This section provides all ingredients needed to solve the null geodesic for moving photons.

3.1 Geodesic equations

Motion of a particle in a spacetime always follows the geodesic equations. The geodesic equations is given

by

ẍa + Γabcẋ
bẋc = 0 (3.1)

Due to symmetry, geodesic equations of t and z are the same, which leads to the following equation

d2

dλ2
(z − t) = 0 (3.2)

, where λ is the affine parameter. Therefore, z − t = Aλ + B. The affine parameter can be freely

transformed by λ = aλnew + b, so we obtain

z − t = −λ (3.3)

3.2 Null geodesics

Besides geodesic equations, photons also obey the null geodesic equation

gµν ẋµẋν = 0 (3.4)

, which is

−ṫ2 + (1 + h+ cos(k+λ− φ1))ẋ2 + (1− h+ cos(k+λ− φ1))ẏ2 + 2h× cos(k×λ− φ2)ẋẏ + ż2 = 0 (3.5)

3.3 Killing vectors

The metric is invariant under changes in x or y coordinates and hence inhibits conservation. The conserved

quantities can be easily obtained through the usage of killing vectors. Killing vectors of the given metric

is

Kµ = gµ1,K
′
µ = gµ2 (3.6)
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, so Kµx
µ is a conserved quantities. Therefore

(1 + h+ cos(k+λ− φ1))ẋ+ h× cos(k×λ− φ2)ẏ = cx (3.7)

h× cos(k×λ− φ2)ẋ+ (1− h+ cos(k+λ− φ1)ẏ = cy (3.8)

,where cx and cy are two conserved quantities describing the photon. cx ≈ ẋ and cy ≈ ẏ when we ignore

the effect of GW. That means cx and cy are closely related to the speed of photon in x and y direction

respectively.

4 Exact equations of motion

In section 3, all formulas needed are introduced to obtain the equations of motion of a photon in plane

GW. Eq.(4.1) & (4.2) can be obtained from Eq.(3.7) & (3.8). Substitute Eq.(3.3), (3.7) & (3.8) into

Eq.(3.5) one gets Eq.(4.3) & (4.4).

ẋ =
cx − cxh+ cos(k+λ− φ1)− cyh× cos(k×λ− φ2)

1− h2+ cos2(k+λ− φ1)− h2× cos2(k×λ− φ2)
(4.1)

ẏ =
cy + cyh+ cos(k+λ− φ1)− cxh× cos(k×λ− φ2)

1− h2+ cos2(k+λ− φ1)− h2× cos2(k×λ− φ2)
(4.2)

ż =
1

2
(cxẋ+ cy ẏ)− 1

2
(4.3)

ṫ =
1

2
(cxẋ+ cy ẏ) +

1

2
(4.4)

5 Preliminary results

5.1 General solutions

It is difficult to integrate Eq.(4.1) ∼ (4.4) directly. Nevertheless, magnitude of the GW is very weak (e.g.

h+, h× ∼ 10−21), so Eq.(4.1) and Eq.(4.2) can be written as

ẋ = (cx−cxh+ cos(k+λ−φ1)−cyh× cos(k×λ−φ2))(1+h2+ cos2(k+λ−φ1)+h2× cos2(k×λ−φ2)+O(max(h4+, h
4
×)))

(5.1)

ẏ = (cy+cyh+ cos(k+λ−φ1)−cxh× cos(k×λ−φ2))(1+h2+ cos2(k+λ−φ1)+h2× cos2(k×λ−φ2)+O(max(h4+, h
4
×)))

(5.2)

Therefore,

x(λ) = cxλ︸︷︷︸
0th order

−cxh+
k+

sin(k+λ− φ1)− cyh×
k×

sin(k×λ− φ2)︸ ︷︷ ︸
1st order

+cx(
h2+ + h2×

2
λ+

h2+
4k+

sin(2k+λ− 2φ1) +
h2×
4k×

sin(2k×λ− 2φ2))︸ ︷︷ ︸
2nd order

+O(max(h3+, h
3
×))︸ ︷︷ ︸

3rd order

(5.3)

y(λ) = cyλ︸︷︷︸
0th order

+
cyh+
k+

sin(k+λ− φ1)− cxh×
k×

sin(k×λ− φ2)︸ ︷︷ ︸
1st order

+cy(
h2+ + h2×

2
λ+

h2+
4k+

sin(2k+λ− φ1) +
h2×
4k×

sin(2k×λ− 2φ2))︸ ︷︷ ︸
2nd order

+O(max(h3+, h
3
×))︸ ︷︷ ︸

3rd order

(5.4)
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z(λ) =
1

2
(cxx+ cyy)− λ

2
(5.5)

t(λ) =
1

2
(cxx+ cyy) +

λ

2
(5.6)

I keep the terms to the 2nd order because it shows some special feature. For example, a
2+b2

2 λ represents

the photon constantly push by GW, while sin 2k+λ and sin(2k×λ + 2φ) illustrates other periodicities of

the solutions. Higher order terms can be worked out whenever necessary.

5.2 Plus polarization

Set h× = 0 so the GW is only composited of plus polarization. Furthermore, set h+ = 10−21, k+ =

0.002km−1 and φ1 = 0 This simply model gives us a primary feeling of the effect of GW on a moving

photon. For convenience, let cx = 0 so that the geodesic of photons is confined on y-z plane. Fig.1 shows

the geodesics of different values of cy. First look at cy = 1, it’s path is affected by the gravitational waves

so it is shaking while propagating, but the effect is very tiny as you can see from the scale. The cy = 1

curve is actually slowly moving upwards (z-direction), but the effect is too small to see here. For cy = 2,

it looks like a straight line just because of the scaling problem. I am unable to show the shaking of it,

but from Eq.(18) you know it is fluctuating like cy = 1. For cy = 0, it is a completely straight line. It is

blocked in Fig.1a, but you can see it in Fig.1b. This means if the light and GW propagate in the same

direction, the light will not be affected, and the speed is c. The geodesic looks as if it is a straight line if

someone sees it from far away (as shown in Fig. 1b).

(a) Zoom in
(b) Zoom out

Figure 1: Geodesics of photons at different values of cy, while cx = 0. GW is propagating in z-direction,

where k+ = 0.002km−1, h+ = 10−21

5.3 Mixed polarization

Put cx = 0, cy = 1,

x(λ) = −h×
k×

sin(k×λ− φ2) (5.7)

y(λ) = λ+
h+
k+

sin(k+λ− φ1) +
h2+ + h2×

2
λ+

h2+
4k+

sin(2k+λ− 2φ1) +
h2×
4k×

sin(2k×λ− 2φ2) (5.8)
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(a) xy-plane view (b) yz-plane view

(c) xz-plane view

Figure 2: Motion of photon on xz-plane, where a = 1.5 × 10−21, b = 4 × 10−21, k+ = 0.003km−1, k× =

0.002km−1, φ1 = 0, φ2 = π/4, cx = 0, cy = 1

z(λ) =
1

2
(
h+
k+

sin(k+λ− φ1) +
h2+ + h2×

2
λ+

h2+
4k+

sin(2k+λ− 2φ1) +
h2×
4k×

sin(2k×λ− 2φ2)) (5.9)

Unlike single polarization situation, the photon can no longer be confined on y-z plane even I set cx = 0.

Photon is mainly pointing to the y-direction as you can see from the equations. Meanwhile, the photon

is fluctuating both in x and z direction. Figure 2 shows the fluctuation of photon on xz-plane. In Figure

2, photon’s motion looks periodic, it is because the first order of Eq.(46) is dominating. The period is

around 133 seconds under the given parameters. The displacement is unmeasurable but only due to the

magnitude of h+ and h×. Imaging a light source near a GW source (compare to Earth), so h+ and h×

can be up to 10−8. Put this value back to the solution then the displacement becomes as large as 1cm.

Although the validity of this simply model in a nearer field is in question, it hints that in some cases the

effect of GW on a propagating photon is non-negligible.

5.4 Remark

If one is interested in mixed polarization with same wavelengths and phases, but only differ by the

magnitude of the mode, which means h+ 6= h×, it is actually same as a single polarization as shown in

the following. The perturbative metric hµν is now

h11 = h+ cos k(z − t), h22 = −h+ cos k(z − t), h12 = h21 = h× cos k(z − t) (5.10)
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, otherwise zero. By performing a rotation transformation(
x

y

)
=

(
cos θ sin θ

sin θ − cos θ

)(
X

Y

)
(5.11)

, where tan 2θ = b/a. Then, the metric becomes

ds2 = −dt2+(1+(a cos 2θ+b sin 2θ) cos k(z−t))dX2+(1−(a cos 2θ+b sin 2θ) cos k(z−t))dY 2+dz2 (5.12)

, which means in this case, it is still a single polarization GW.

6 Massive particles

It is easy to generalize the calculation to massive particles. Instead of Eq.(3.4), massive particle obey the

following equation

gµν ẋ
µẋν = −1 (6.1)

, where the affine parameter is now the proper time of the particle. Affine parameter is well defined, so

Eq.(3.3) has to be modified

z − t = −czτ + Z = −λ (6.2)

cz is related to particle speed in z direction. Keep λ as the parameter for the differential equations. The

remaining maths are very similar. The equations of motion are

ẋ =
1

cz

cx − cxa cos k+λ− cyb cos(k×λ+ φ)

1− a2 cos2 k+λ− b2 cos2(k×λ+ φ)
(6.3)

ẏ =
1

cz

cy + cya cos k+λ− cxb cos(k×λ+ φ)

1− a2 cos2 k+λ− b2 cos2(k×λ+ φ)
(6.4)

ż =
1

2cz
(cxẋ+ cy ẏ)− c2z − 1

2c2z
(6.5)

ṫ =
1

2cz
(cxẋ+ cy ẏ) +

c2z + 1

2c2z
(6.6)

We need cx, cy and cz to determine the motion.

7 Other approach

Light can be treated as photon and EM wave as well. An EM field carries energy, according to Einstein

equation, anything carries energy can distort the spacetime. Therefore, when GW and EMW collides

with each other, EMW would alter the spacetime, in other words, the spacetime is not the original GW.

Meanwhile, spacetime tells the EM field how to propagate. In a simpler terminology, this is the EMW-

curvature coupling. Suppose the space is filled with electromagnetic field only, so the stress-energy tensor

can be expressed by the electromagnetic stress-energy tensor

Tµν =
1

µ0
[FµαF να −

1

4
ηµνFαβF

αβ ] (7.1)

In addition to Einstein equation, Maxwell’s equation and perturbation theory, the solutions are given by

(Cooperstock, 1968)

(1)F
k
i,k = ha,bi (0)Fab + hbk(0)Fib,k (7.2)
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(1)Fik,m + (1)Fmi,k + (1)Fkm,i = 0 (7.3)

,where hab is the perturbation metric, in our case, it is the GW. See (Cooperstock, 1968) for derivation.

The zeroth order terms are given by

h11 = −h33 = h cos(kgy − wgt) (7.4)

, which presents a y-propagating GW.

(0)Fab =


0 −Ex −Ey 0

Ex 0 Bz 0

Ey −Bz 0 0

0 0 0 0

 (7.5)

, where (0)Ex = (0)E cos θ cos((kxx + kyy) − wt), (0)Ey = (0)E sin θ cos((kxx + kyy) − wt) and (0)Bz =

(0)E cos((kxx+kyy)−wt). Eq.(56) represents EM wave travels on xy-plane. This setup describes collision

of GW and EMW. After substituting to Eq.(53) and (54) and manipulate it, one gets

(1)F12,00 − (1)F12,11 − (1)F12,22 =
(0)Eh

2
(k2g(cos θ + 1)− 1

2
k2x −

1

2
kgky) cos( ~k+ · ~r − Ω+t)

+
(0)Eh

2
(k2g(cos θ + 1)− 1

2
k2x +

1

2
kgky) cos( ~k− · ~r − Ω−t)

(7.6)

, where ~k+ = (kx, ky + kg, 0), Ω+ = w +wg, ~k− = (kx, ky − kg, 0) and Ω− = w −wg. Eq.(7.6) means the

original EMW generates two more waves due to the presence of GW. Their propagation directions are

represented by ~k+ and ~k− .The generated waves are weak as the magnitude of GW h is small.

7.1 Discussion

Do the two other waves indeed exist or it is just flaw generated by perturbation theory? Indeed, (Mon-

tanari, 1998) criticized such method is incorrect. In that paper, Montanari indicates that perturbation

theory changed some intrinsic property of the problem, or the crucial mathematical structure of the orig-

inal equation, which leads to non-physical result. Although I worked out the result, I have no confidence

about any implication of it. I included this part for anyone interested.

8 Future work

Geodesics are the motion of photons when the spacetime is well given, in other words, the presence of

photons does not contribute any curvature of spacetime. This may not be always correct although the

effect is always too tiny to be considered. For instance, a spinning object like pulsars is known to be off

the geodesics and the motion is governed by Mathisson-Papapetrou-Dixon (MPD) equations (Mathisson,

1937; Papapetrou, 1951; Dixon, 1970). Photon is a spin-half particle, Does the spin make it off the

geodesic? Can MPD equations apply on massless particles like photons? These are the questions we

want to answer in the future.

Besides photons, light can also be seen as EM waves. This gives us another view or method to

deal with the problem of light-GW interaction. Like geodesics of photon, which means non-coupling of

photon and spacetime, we can have a test EM field (the concept of test particle) to propagate in this given
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spacetime. Furthermore, coupling of EM field and spacetime is more obvious as the energy density of

EM field can be easily written down and substituted into Einstein equation to illustrate the coupling. To

conclude, herein I suggested 4 methods: treat light as photons, and we have non-coupling and coupling

case; treat light as EM waves, and we have non-coupling and coupling case as well.

It is interesting that one single problem can be treated by so many different ways. Do they all lead

to a single result? We have not known yet, and his project is still ongoing.
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