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Einstein’s general relativity predicts the radiation of gravitational waves when masses accelerate, for instance, as the components
of a binary black hole system orbit each other. This was confirmed when LIGO (The Laser-Interferometry Gravitational-wave
Observatory) made the first detection of gravitational waves from a binary black hole merger on 14 September 2015. The
success of gravitational waves detection opens a new window for scientists to study the Universe. In Einstein’s general
theory of relativity, it is also predicted that light rays bend when passing by masses in spacetime, a phenomenon known as
gravitational lensing. As a manifestation of Einstein’s equivalence principle, everything in motion, independent of their nature,
is gravitationally lensed in the same way. In such sense, gravitational waves will also be lensed, resulting in multiple signals
which differ in arrival times and amplitudes. Since the amplitudes of such signals may differ, there are cases that they are
not identified as signals. In this research, we aim to search for lensed signals of the binary black hole signals detected by
LIGO. We generate templates of possible lensed gravitational wave signals for detected events by simulating gravitational
wave signals as observed by LIGO. Our major objective is to make use of those templates in the reduced template bank to
re-identify possible lensed signals which may have insufficiently high signal-to-noise ratio to be distinguishable from detector
noise when a full template bank is used. We will further attempt to infer the intrinsic properties of the gravitational lenses
from the lensed gravitational wave signals identified.

I. Introduction and Motivation
With the successful detections of gravitational waves

[1]–[6] over the past few years, we have already verified
the existence of gravitational waves predicted by Albert
Einstein’s general theory of relativity in 1915 [7]. Therefore,
it is now the right time to test the other properties of
gravitational waves as General Relativity predicts, and in this
project, our main focus is gravitational lensing. In particular,
we aim to search for lensed gravitational wave signals of
confirmed LIGO events from compact binary coalescences.
Our major goal is to set up and test a methodology to
re-identify possible lensed candidates which are initially
indistinguishable from the background. We will then try
to infer the intrinsic properties of the gravitational lenses
by making use of the identified lensed gravitational wave
signals.

In this report, Section II provides background information
on the research. Section III presents the methods used and
procedures in our project. Section IV gives a brief conclusion
for the project. Finally, Section V discusses the future work
following this project.

II. Background
A. Properties of Gravitational Waves

According to Albert Einstein’s general theory of relativity
in 1915 [7], the Universe can be perceived as a fabric of

spacetime. Masses like black holes and neutron stars on
this fabric produce spacetime curvature [8]. When masses
accelerate in spacetime, they cause ripples like water waves
generated when one throws a stone into water. Such ripples
are known as gravitational waves. In this project we focus
on four fundamental properties for gravitational waves
as predicted by General Relativity, namely their speed,
polarization, weak interaction with matter and ability to
be lensed gravitationally.

The speed of gravitational waves is predicted by General
Relativity to be the same as the speed of light c in vacuum [9].
This has been experimentally confirmed by the detection of
gravitational wave from the neutron star inspiral GW170817
in 2017, which constrained the difference between the speed
of light and the speed of gravitational wave to between
−3× 10−15 and +7× 10−16 [10].

For the polarization of gravitational waves, as discussed
in Ref. [11], we imagine placing a circular ring of test
masses on the x− y plane with its center coinciding with
the origin. If we assume there exists a transverse - traceless
(TT) gravitational wave propagating in the z-direction, then
the effect of such gravitational wave is constrained to be
on the x− y plane only. Under the influence of the wave,
the test masses ring can exhibit two orthogonal deformation
modes.

As shown in Figure 1, when a plus (+) polarized
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Fig. 1. Two orthogonal deformation modes within one period of the test
mass ring in response to a TT-gravitational wave. The upper row refers to
the plus polarization (denoted by +) and the lower row refers to the cross
polarization (denoted by ×) of the gravitational wave. Image reproduced
from [11].

gravitational wave passes through our ring of test masses, the
ring is stretched along the y-direction and then along the x-
direction into an ellipse of the same area as the original circle
throughout one period. On the other hand, if the gravitational
wave passing through is cross (×) polarized instead, the
ring will be stretched along the y = x and y = −x line in
a similar way as for plus (+) polarized gravitational wave.
We can see that gravitational waves can be polarized in two
particular modes, namely the plus (+) polarization, and cross
(×) polarization. The effect of stretching and shrinking of
proper lengths between test masses in the ring by polarized
gravitational waves is applied to the detection of gravitational
waves. In particular, detectors including LIGO and VIRGO
detect gravitational waves using interferometry.

B. Detection of Gravitational Waves
A schematic overview of the gravitational wave detector

used by LIGO is shown in Figure 2 [12]. It is a Michelson
interferometer consisting of two arms, each of 4 km long.
A laser beam is incident on a beam splitter, which splits
the incident laser beam into two beams propagating along
the two arms of the interferometer. At the end of the arm,
a mirror reflects the beams which then rejoin at the beam

splitter and is finally collected by a photodetector to observe
the interference pattern.

Fig. 2. A simplified schematic overview of the gravitational wave detector
used by LIGO. Note that many important components of the detector,
including the power and signal recycling mirrors and the input and output
mode cleaners, are not shown for simplicity. Image reproduced from [12].

The interference of the two laser beams is set to be
destructive at the photodetector. Alternatively, when there
are alterations to the lengths of the arms which cause a
path difference between the two laser beams, a constructive
interference pattern will be observed. The change in arm
lengths is not necessarily caused by gravitational waves
because there is also noise which can cause such effect.
These noises include seismic noises, thermal noises, gravity-
gradient noises and quantum noises [13].

In order to detect gravitational waves, we must constrain
ourselves to those which have a sufficiently large pertur-
bation to spacetime. Typically, we focus on four types of
gravitational waves, namely Continuous Waves, Stochastic
Waves, Bursts and Compact Binary Coalescenes, the last one
is the focus of this research. When two compact objects, for
instance, neutron stars and/or black holes, orbit about their
common center-of-mass, they will inspiral due to loss of or-
bital energy by means of gravitational radiation, then merge
into a single object which then rings down. This sequence,
“inspiral-merger-ringdown”, is referred to as “coalescence”.
Among the four mentioned types of gravitational waves,
Compact Binary Coalescences are sources of gravitational
waves with well modelled waveforms compared to other
kinds of gravitational wave sources, and hence one can use a
technique called matched filtering to search for such signals.

We now outline the major steps in analyzing gravitational-
wave data [11]. Currently, matched filtering is a method
to distinguish the weak gravitational wave signals from



the detector noise fluctuations. The principle of matched
filtering is to slide templates of an expected waveform from
an astrophysical event across the received data and look for
a strong cross-correlation between the two.

We denote s(t) as the signal received from a detector, n(t)
as the background noise and h(t) as the gravitational wave
signal (if it exists). s(t) is the sum of n(t) and h(t), that is

s(t) = n(t) + h(t). (1)

If we have a filter P (t), we may define

ŝ =

∫
s(t)P (t)dt. (2)

We denote 〈S〉 and N as the expectation value and root
mean square value of ŝ if a gravitational wave signal is
included in the data respectively. Then we have

〈S〉 =

∫
〈s(t)P (t)〉dt

=

∫
〈(n(t) + h(t))P (t)〉dt

=

∫
〈h(t)P (t)〉dt

=

∫
h̃(f)P̃ ∗(f)df,

(3)

where we have taken 〈n(t)P (t)〉 = 0 (since the noise is
assumed to be random and gaussian) and the tilde (Ã) denotes
the Fourier-transform of A. Note that the last line of equation
(3) is a result of Parseval’s Theorem.

Also, if h(t) = 0, we have

N2 = 〈ŝ2〉 − 〈ŝ〉2

= 〈ŝ2〉dt

=

∫ ∫
P (t)P (t′)〈n(t)n(t′)〉dtdt′

=
1

2

∫
Sn(f)|P̃ (f)|2df,

(4)

where Sn(f) denotes the power spectral density. We can
therefore define signal-to-noise ratio (SNR) as

ρ =
〈S〉
N

=

∫
h̃(f)P̃ ∗(f)df√∫

1
2Sn(f)|P̃ (f)|2df

.
(5)

Furthermore, we define the inner product between two
functions x(t) and y(t) to be:

〈x, y〉 = <
(∫ ∞
−∞

x̃∗(f)ỹ(f)
1
2Sn(f)

)
df. (6)

Consequently, we can have equation (5) simplified as

ρ =
〈d, h〉√
〈h, h〉

, (7)

where d is the data received in the detector. With an
optimal matched filter P (t), and provided that the identical
gravitational wave signal can be seen in coincidence between
two or more detectors, LIGO detectors can detect inspiral
signals with a network SNR ρnet > 8 [14]. The network SNR
for two or more detectors is simply calculated by adding the
SNR of individual detectors in quadrature, that is

ρ2
net = Σiρ

2
i , (8)

where the index i runs over the individual detectors [11].
In reality, the rate of gravitational wave events occurring

is expected to as low as about a few per year [13]. To avoid
mistaking large and infrequent detector noise fluctuations
mimicking events as signals, we need to find out the false
alarm rate (FAR), which is how often an abnormal noise
signal mimicking event can be measured. The smaller
the FAR is, the more plausible the candidate is a real
astrophysical event. The FAR for any signal is estimated by
[15]

FAR =
N

ΣiTi
, (9)

where N is the total number of background triggers similar
to the one which we consider as a real signal, and Ti is the
analyzed time interval in the ith background trial.

C. Gravitational Lensing
As predicted by General Relativity, since masses can curve

spacetime, the path of a light ray from a source can be bent
and deflected before reaching the observer (See Figure 3).
Such effect is known as gravitational lensing, in the sense
that it is similar to light rays being bent by optical lenses,
but in this case the “lenses” are masses instead. In particular,
since a source emits light rays in all direction, light rays
propagating along different directions are bent differently
and may, therefore, form multiple images. The images can
vary in arrival time and amplitudes.

Fig. 3. Light rays from a source are bent because of a gravitational lens in
between the source and the observer. Image from [16].

In fact, according to Einstein’s equivalence principle [17],
all electromagnetic waves, as well as all gravitational waves,
will be gravitationally lensed in the same way, and this
phenomenon has been observed on astronomical scales for
light and gravitational waves of all wavelengths. However,
the study of gravitational lensing of light encounters dif-
ficulties from the blocking of light by dust clouds in the
Universe, as well as the large noise which screened the light



signals [18]. General relativity also predicts that gravitational
waves, having a similar nature as light, can also be lensed
gravitationally, producing multiple signals, and same as light,
is achromatic. In contrast to light, gravitational waves are
not disturbed by the dust clouds between the source and
observing point.

Over the past two years, more than six gravitational wave
detections have been successfully made [1]–[6], which have
confirmed the prediction of the existence of gravitational
waves and permitted new tests of General Relativity in
the strong field regime and make it possible to study the
properties of the sources, including masses, spins and merger
rates. Among the four predicted fundamental properties of
gravitational waves, which are their speed, polarization, weak
interaction with matter and ability to be lensed gravitationally,
that we mentioned at the very beginning of Section II, we
are only left with the last one - ability to be gravitational
lensed, untested. Therefore, it is now the right time for us
to start searching for lensed gravitational wave signals so
as to test this property of gravitational wave predicted from
general relativity.

Due to lensing, there are time delays among the waves
of lensed events. In the discussion for electromagnetic
waves, there are two major contribution to the delay, namely
refraction and gravitational time delay. Gravitational lensing
occurs when light rays pass through spacetime perturbed
by masses. This will form multiple signals which differ in
amplitude and time of arrival. The difference in arrival time
is due to 1) The path lengths travelled from the images to
the observer vary, and 2) The effective speed of light can
be different under the influence of a refractive index larger
than one, resulting in arrival time delay.

The same thing happens with gravitational waves, except
that their weak interaction with matter means that the
refractive index is negligibly different from one. Therefore,
the only crucial effect to account for is the geometric effect,
which causes both magnification and time delay of lensed
signals. An important point to note here is that there is no
dispersion, and hence the geometric lensing is achromatic.
That is to say, it affects all frequency components of the
wave in exactly the same way.

In the derivations below, for cosmological distances, they
are referred to as the angular diameter distances. As shown in
Figure 4, the angular diameter distances from the observer to
the lens and the source are given by DL and DS respectively,
and that from the source to the lens is DLS . When we
compare the path difference between the unperturbed ray
(dotted line between the observer and the source in figure
4), that is when the lens is absent, and the lensed ray (solid
lines between the observer and the source), we have [19]

~ξ =
DLDLS

DS
(~θ − ~θS), (10)

where ξ is the separation between the two rays at the lens, ~θ
is the two-dimensional angle between the horizontal of the
observer and the point where the gravitational waves strike

the lens, and ~θS is the angle between the horizontal of the
observer and the source.

With this, we have the geometrical path difference ∆D
between the unperturbed ray and lensed ray is given by

∆D =
~ξ(̇~θ − ~θS)

2
. (11)

Finally, the geometrical time delay ∆t due to gravitational
lensing is given by

∆t = (1 + zd)
DLDLS

2DSc
(~θ − ~θS)2, (12)

where zd denotes the gravitational redshift. From the calcu-
lation of the time delay, we are able to infer the distance of
the lens from the observer.

For gravitationally lensed gravitational wave signals, the
lensed waveform has an amplitude hlensed

+, x (f) given by [20],
[21]

hlensed
+, x (f) = F (ω, y)hunlensed

+, x (f), (13)

where hunlensed
+, x (f) denotes the amplitude of the unlensed

gravitational waves, and F (ω, y) is the amplification function
given by

F (ω, y) = exp
[
πω

4
+ i

ω

2

(
ln

(
ω

2

)
−
√
y2 + 4− y

2

4

+ ln

(√
y2 + 4 + y

2

)]
Γ

(
1− i

2
ω

)
×1 F1

(
i

2
ω, 1;

i

2
ωy2

)
,

(14)

where hlensed
+, x (f) is the waveform without lensing, Γ is

the complex gamma function, 1F1 is the confluent hy-
pergeometric function of the first kind, ω = 8πMLzf ;
MLz = ML(1+zL) is the redshifted lens mass, y = DLS

Ξ0DS
is

the source position, Ξ0 = ( 4MLDLDLS
DS

)
1
2 is a normalisation

constant, and ML and zL are the lens mass and redshift
respectively. From finding the amplitude of the lensed
gravitational waves, we can infer both the mass ML and the
position of the lens.

Fig. 4. In this figure, DL denotes the distance between the lens and the
observer, DS denotes the distance between the observer and the image,
DLS denotes the distance between the lens and the image, ~θ denotes the
two dimensional angle between the observer and lensing point, and ~θs
denotes the two dimensional angle between the source and the observer.
Note that θ and θs are both two-dimensional angles. Image from [19].



Consider a point mass lens, particularly for compact
objects like black holes or stars. In the geometrical optics
limit (f >> M−1

Lz ) from the equation above, we have [21]

F (ω, y) = |µ+|1/2 − i|µ−|1/2e2πif∆td , (15)

where the magnification of each image is

µ± =
1

2
± (y2 + 2)

2y
√
y2 + 4

, (16)

and the time delay between the double images is

∆td = 4MLz

[
y
√
y2 + 4

2
+ ln

(√
y2 + 4 + 4√
y2 + 4− y

)]
. (17)

The typical time delay for the point mass lens is therefore
2× 103s×

(
ML

108M�

)
. Furthermore, for gravitational waves

from coalescence of super massive black holes of mass
104 − 107M� under the lensing effect of a point mass lens
of mass in the range 106 − 109M�, then the typical time
delay will be 10 − 14s [21]. Therefore, for gravitational
waves from blackholes of masses lower than 104M�, we
would expect a time delay in the range 101 − 103s.

III. Methods and Procedures
A. GstLAL search pipeline

This research is based on the use of GstLAL search
pipeline [22]. Figure 5 shows the schematic flow of the
pipeline.

B. Searching for possible lensed candidates for
GW150914 in O1 and O2 using LALInference posterior
data

We make use of LALInference software library [23] pos-
terior data analysis of the event GW150914. The following
table shows the posterior estimation of the parameters of the
two black holes involved in GW150914:

Parameter Maximum Posteriori (maP) Variation (σ)
m1,source 32.9M� 4.9M�
m2,source 13.7M� 3.5M�
a1,z −0.618 0.218
a2,z 0.083 0.243

where m1,source, m2,source, a1,z and a2,z are the respective
masses and components of spins aligned with the orbital
angular momentum of the binary blackhole system of the
two black holes in GW150914 evaluated by the LALInfer-
ence library. Using the information, we search for triggers
throughout O1 and O2 with masses and spins within 3 and
4σs from the maP of GW150914 which are regarded as
possible lensed candidates for the event. Figure 6 to 9 show
the search results for O1 and O2 within 3σ range and 4σ
range. Note that µ on the y-axis refers to the magnification
of the triggers comparing to GW150914, which is evaluated
by:

Fig. 5. A schematic flow of the GstLAL search pipeline. Image from [22].

µ =
Signal-to-noise ratio of found trigger
Signal-to-noise ratio of GW150914

, (18)

and the relative time delay on the x-axis refers to the
time delay of the found triggers relative to the geocentric
arrival time of GW150914, which is 1126259462s [1] (The
corresponding UTC time is 2015-09-14 09:50:45). The
colours of the dots indicate the likelihood, a measure of
the distinguishability of the event from the detector noise,
of the triggers.



Fig. 6. Searched triggers in O1 with parameters within 3σ range from
GW150914.

Fig. 7. Searched triggers in O2 with parameters within 3σ range from
GW150914.

Remarks on the method
We note that the trigger, which is a candidate event

where the SNR ρ(t) peaks in time above a certain threshold,
corresponding to GW150914, which should have µ = 1
and Relative time delay = 0, does not show up in the
3σ range plot in O1, and it only shows up when we
loosen the range to 4σ. This is due to the inconsistency
of data used between LALInference and GstLAL. In fact,
LALInference is designed to accurately infer the parameters
of the source, while GstLAL is not. Therefore, their results
are not completely agreeing with each other, leading to the
absence of GW150914 in the 3σ plot.

Also, we are aware that the signal-to-noise ratio (SNR)
evaluated in both O1 and O2 may have discrepancies since
the background noise is varying every moment. Initially, we
proposed looking into the power spectral density in O1 and
O2 to link the SNRs, but we decided to do better and hence

Fig. 8. Searched triggers in O1 with parameters within 4σ range from
GW150914. Note that the detected GW150914 event is visible at relative
time delay = 0 and µ = 1

Fig. 9. Searched triggers in O2 with parameters within 4σ range from
GW150914.

this method is called off.



C. Searching for possible lensed candidates for
GW150914 in O1 and O2 using GstLAL data

Regarding the problems in the previous method, we rerun
the search by using GstLAL data. The following table shows
the GstLAL parameter data regarding the event GW150914
[1]:

Parameter Value
Mass 1 47.9M�
Mass 2 36.5M�

Spin 1 (along z-direction) 0.962
Spin 2 (along z-direction) −0.900

Chirp mass 33.8M�

Using similar techniques from the last method, we search
through O1 to look for triggers with mass 1 and mass 2
within a certain percentage range of the chirp mass. The
objective is to find a distinctive feature for separating possible
lensed triggers from the background. Figure 10 - 14 show
the results for 10%, 30% and 50% chirp mass range.

Fig. 10. Searched triggers in O1 with mass 1 and mass 2 within 10% chirp
mass range from GW150914.

We note that all of the triggers in the search have
likelihood smaller than 20, except for the detected
GW150914 event which has a likelihood above 70.

Remarks on the method
Although some triggers appear to be distinguishable from

the background cluster in the 30% and 50% plots, the
magnification of those triggers is unexpectedly high (up to
0.7) considering the exceptionally high SNR of GW150914.
A possible reason behind is our neglecting of χ2 for the
detection. We decided to shelve this method and to obtain a
distribution of the likelihood of possible lensed triggers as
our next step.

Fig. 11. Searched triggers in O1 with mass 1 and mass 2 within 30% chirp
mass range from GW150914.

Fig. 12. Searched triggers in O1 with mass 1 and mass 2 within 50% chirp
mass range from GW150914.



D. Searching for possible lensed candidates for
GW150914, GW170608 and GW170814 in O1 and O2
using unclustered GstLAL data

We aim to retrieve a likelihood distribution of lensed
gravitational wave signals at this stage. The objective of doing
so is to figure out the range of parameters and templates to
use to search for them. We will form a template bank which
is much smaller than the full bank used to search for any
binary coalescence signal capable of of being detected by
the LIGO detectors. It is expected that the event-count vs
ranking statistic threshold curve will be shifted downward for
lensed triggers, as shown in Figure 13, since in our gstLAL
run, the background noise distribution is not from the entire
template bank, but instead from a much smaller template
bank, and therefore produces much less background, which
allows us to do a targeted search for the lensed gravitational
wave signals. This is the major reason why we are launching
the injection campaign in the later stage of our project.

Fig. 13. Expected event-count vs ranking statistic threshold curve for lensed
gravitational wave signals, using GW170608 as an example. Note that the
shifted red event-count vs ranking statistic threshold curve, and also the
stars denoting the lensed triggers we expect to find, are only for illustrative
means. In other words, they are not actual data.

We rerun part of the GstLAL run jobs and obtain the
unclustered data for each focused event. We then obtain
templates around the time of the event and select those
with SNR higher than 70% of the maximum. We search
through the chunk in which the event happened to find
triggers which match the parameters (mass 1, mass2, spin1z,
spin2z) in our template bank exactly and regard them as
possible lensed triggers. Finally, we plot the distribution
of the likelihood of the triggers and compare it with the
event-count vs ranking statistic threshold graph. Figure
14 - 17 show the results for GW150914, GW170608 and
GW170814. In each of the figures, one sees the solid black
line (observed) and the dashed line (expected) indicating
the event-count vs ranking statistics threshold curve with
the background from the entire template bank. The curve
with background from the much smaller template banks we
used for our search is not yet to be known. The blue bar(s)
in the middle and/or right side of each graph corresponds
to the detected event, while those on the left refer to some

found triggers with very low likelihood from our search.
We hope to get a sense of how the likelihood distribution
for lensed gravitational wave signals would look like from
these searches.

Remarks on the method
From the plots, we can already get a sense of how the

distribution of the likelihood of possible lensed triggers will
be. However, we are still uncertain about the searching range
of parameters (reduced template bank) for possible lensed
triggers. Until now, we are still varying the SNR percentage
threshold to determine a reduced templated bank and get a
satisfactory result. A more systematic way to actually obtain
the likelihood distribution of lensed candidates will be to
run an injection campaign, which is done in Week 4 - 6 of
the SURF period.

Fig. 14. Distribution of likelihood (blue bars) of searched matching triggers
in O1-chunk1 using raw data for the event GW150914. Note that the barely
visible blue bar on the right boundary corresponds to the detection of the
event GW150914.

Fig. 15. Distribution of likelihood (blue bars) of searched matching triggers
in O2-chunk-GW170608 using raw data for the event GW170608. The
blue bar on the right boundary corresponds to the detection of the event
GW170608.



Fig. 16. Distribution of likelihood (blue bars) of searched matching triggers
in O2-chunk21 using raw data for the event GW170814. The blue bar in the
middle refers to the detection of the event GW170814. Note that the solid
(observed) event-count versus ranking statistics threshold curve extends
beyond the middle blue bar instead of stopping there, since there is another
detection, which is GW170817, in the same chunk we are analysing here.

E. Preparation work for running an injection campaign

Following the last part, we attempt to run an injection
campaign to obtain a likelihood distribution of lensed
gravitational wave signals. From this, we can identify a
set of templates for use in a reduced template bank for a
“targeted” search. The first step is to read in the LALInference
posterior samples [24]. Table 1 below shows the important
items in each of the LALinference posterior sample file
(using GW150914 - allSsp post.dat as a sample).

TABLE I
A TABLE SHOWING THE IMPORTANT ELEMENTS IN EACH OF THE

LALINFERENCE POSTERIOR SAMPLE FILE.

Item Content [25]
l1 end time Reference time at Livingston site (time of coalescence /

peak amplitude )
v1 end time Reference time at VIRGO site (time of coalescence /

peak amplitude )
h1 end time Reference time at Hanford site (time of coalescence /

peak amplitude )
time Reference time at geocentre (time of coalescence / peak

amplitude)
m1 Mass of the primary object (detector frame)
m2 Mass of the secondary object (detector frame)
a1z The z-component of spin of the primary object
a2z The z-component of spin of the secondary object
mc Chirp mass (detector frame)
distance Distance to source
dec Declination of the gravitational wave source
ra Right ascension of the gravitational wave source
psi Polarisation angle (3rd Euler angle) required to transform

the tensor perturbation in the radiation frame to the
detector frame

costheta jn Cosine of the angle between the total angular momentum
and the line of sight vector

theta jn Angle between total angular momentum and line of sight
eta Symmetric mass-ratio
optimal snr Optimal Signal-to-Noise Ratio (SNR) of the model
logl Natural log of the likelihood
lal amporder Post Newtonian amplitude order

Next, we try to make an injection file with a sim inspiral
table containing simulated lensed signals of GW150914
which we produced from the posterior samples. The transfer
of information from the posterior samples to the generated
sim inspiral table is not straightforward and some items
require re-calculations. The technical details may be found
in the attached code files. Table 2 lists the important items
in the sim inspiral table and the related posterior samples’
items.

TABLE II
A TABLE SHOWING THE IMPORTANT ELEMENTS IN SIM INSPIRAL TABLE

AND THE RELATED POSTERIOR SAMPLES’ ITEMS.

Item Content and related posterior samples items
h end time Reference time at Hanford site (time of coales-

cence / peak amplitude) [Integral value]
Related item(s) : h1 end time

h end time ns Reference time at Hanford site (time of coales-
cence / peak amplitude) [Nanosecond]
Related item(s) : h1 end time

l end time Reference time at Livingston site (time of
coalescence / peak amplitude) [Integral value]
Related item(s) : l1 end time

l end time ns Reference time at Livingston site (time of
coalescence / peak amplitude) [Nanosecond]
Related item(s) : l1 end time

v end time Reference time at Virgo site (time of coalescence
/ peak amplitude) [Integral value]
Related item(s) : h1 end time

v end time ns Reference time at Virgo site (time of coalescence
/ peak amplitude) [Nanosecond]
Related item(s) : h1 end time

geocent end time Reference time at geocentre (time of coalescence
/ peak amplitude) [Integral value]
Related item(s) : time

geocent end time ns Reference time at geocentre (time of coalescence
/ peak amplitude) [Nanosecond]
Related item(s) : time

mass1 Mass of the primary object (detector frame)
Related item(s) : m1

mass2 Mass of the secondary object (detector frame)
Related item(s) : m2

mchirp Chirp mass (detector frame)
Related item(s) : mc

spin1z The z-component of spin of the primary object
Related item(s) : a1z

spin2z The z-component of spin of the secondary object
Related item(s) : a2z

distance Distance to source
Related item(s) : distance, ra, dec, optimal snr

longitude Right ascension* of the gravitational wave
source
Related item(s) : ra

latitude Declination* of the gravitational wave source
Related item(s) : dec

eta Symmetric mass-ratio
Related item(s) : eta

inclination angle between total angular momentum and line
of sight
Related item(s) : theta jn

polarization Polarisation angle (3rd Euler angle) required to
transform the tensor perturbation in the radiation
frame to the detector frame
Related item(s) : psi

amp order Post Newtonian amplitude order
Related item(s) : lal amporder



Following [26], the quantity

ρ(t) =
|z(t)|
σ

(19)

is the amplitude signal-to-noise ratio of the (quadrature)
matched filter, where σ is a measure of the sensitivity of the
detector to a signal with waveform h1(f) defined by

σ2 = 4

∫ ∞
0

h̃1(f)

S(f)
df (20)

with h̃1 being the signal and S(f) being the power spectral
density, and

z(t) = 4

∫ ∞
0

s̃(f)[h̃∗(f)]

S(f)
e2πiftdf (21)

is the modulus of the complex filter output, with s(f)
following the definition in equation (1). With such, a biased
estimate of the effective distance to the candidate system is

Deff =

(
σ

ρ

)
Mpc. (22)

We generate simulated lensed signals by altering the
effective distance of the samples with equation (22).

Remarks
A challenge to generating simulated lensed signals is that

the samples store only ”distance” D instead of ”effective
distance” Deff, and both of them depend on the sky location
(i.e. right ascension alpha and declination δ) of the source.
Particularly, the relationship between D and Deff is given by

Deff = D

[
F 2

+

(
1 + cos2ι

2

)2

+ F 2
×

(
cos2ι

)]− 1
2

, (23)

where F+ and F× are the antenna response functions for
the signal. The resolution to this is to make use of the
ComputeDetAMResponse from the lal python package to
compute the values of F+ and F×.

F. Running the injection campaign
We substitute information (mass1, mass2, spin1z, spin2z,

distance) of the original injection file by those of our
simulated lensed signals. Using the modified injection file,
we rerun the GstLAL run to search for the injected lensed
signals.

Remarks
The clusters have been problematic and slow over the time

we are running the injection campaign. There are moments
when we cannot even log-into the clusters. According to the
people managing the clusters, they are either encountering
internet issues or hardware issues. We also suspect that
the problems are attributed to the current integration of
KAGRA members into the clusters. To resolve the problem,

we do a shortcut GstLAL run by reducing the injection
time range from the full observation chunk to a week
time. We expect this will help to make the jobs complete
quicker. Although the result may not be perfect, it will
still be decent and satisfactory. The full injection runs will
be done as future work. See Section IV for more information.

We have successfully completed a full injection run for
GW150914 and a shortcut injection run for GW151226
throughout the SURF period. The figures below show
the distance at which you should see a lensed signal for
GW150914 / GW151226. The first panel shows the time
evolution of the horizon distance and the second panel shows
the same information in histogram form.

Fig. 17. The distance at which you should see a lensed signal for GW150914.

Fig. 18. The distance at which you should see a lensed signal for GW151226.

Note that when we generate simulated lensed signals,
we choose to constrain the SNR of each signal to have a
minimum SNR of 4. For each sample, within the range of
SNR 4 to the original SNR of the sample, we generate 10
injections with SNR uniformly distributed in the range by
altering their effective distances. From equation (22) we see
that

ρ ∝ 1

Deff
, (24)

and hence by altering the SNR ρ of the signal we have

dρ ∝ dDeff

D2
eff
. (25)

This relationship is reflected from the histogram shown on
the right side of Figure 18. If we choose another way to
generate our simulated signals, for instance,



ρ2 ∝ 1

D2
eff
, (26)

the distribution shown in the histogram will be different.

After the gstLAL run completed, we search through the
chunk in which the event happened to find triggers which
match the parameters (mass 1, mass2, spin1z, spin2z) of our
recovered templates exactly and regard them as possible
lensed triggers. Finally, we plot the distribution of the
likelihood of the triggers and compare it with the event-
count vs ranking statistic threshold graph. Figure 20-21 show
the results for GW150914 and GW151226. In each of the
figures, one sees the solid black line (observed) and the
dashed line (expected) indicating the event-count vs ranking
statistics threshold curve with the background from the entire
template bank. The curve with background from the much
smaller template banks we used for our search is not yet
to be known. The blue bar(s) on the left refer to the found
triggers with very low likelihood from our search.

Fig. 19. Searched triggers in O1 Chunk 5 with parameters (mass1, mass2,
spin1z, spin2z) matching those of the simulated lensed signals templates
for GW150914 recovered from the injection run. Note that the right blue
bar, representing the detected event GW150914, is still visible in the graph.

As we can see from figure 20 and 21, we have already
successfully lowered the background noise by using a much
smaller template bank for our lensed gravitational wave signal
search. We have also added a red dashed line in Figure 21 as
our expectation of the shifted event-count vs ranking statistic
threshold curve to illustrate the idea. For our next step, we
will use the recovered triggers as the simulated lensed signal
templates and do a gstLAL run search to search for possible
lensed candidates in the data.

Fig. 20. Searched triggers in O1 Chunk 8 with parameters (mass1, mass2,
spin1z, spin2z) matching those of the simulated lensed signals templates for
GW151226 recovered from the injection run. Note that the right blue bar,
representing the detected event GW151226, is still visible in the graph. The
red dashed line is the expected event-count vs ranking statistic threshold
curve, and it is only for illustrative means. In other words, they are not
actual data. However, we can already see that our injection run can open a
new window, as shown by the space between the red shifted curve and the
original black dashed curve, to search for lensed gravitational wave signals.

G. Literature review on gravitational lensing of gravita-
tional waves

We follow the mathematics and approach of [27] to
compute the probability distribution of relative time delays
and magnification of lensed gravitational wave signals
through a singular isothermal ellipsoid (SIE) lens model.
Singular isothermal ellipsoid (SIE) lens models have a surface
mass density which diverges at the center. These lenses can
produce either two or four images. The lens model itself has
two parameters, namely the velocity dispersion σ and the
axis-ratio q. We follow [27] to generate these parameters
with distribution taken from the SDSS galaxy population.
The following figures shows the reproduced results (Figure
24 and 25) compared to the original results shown in [27]
(Figure 22 and 23).

We have reproduced a probability distribution function
of relative time delay δt and magnification of lensed
gravitational wave signals that is very similar to what
was presented in [27]. We noted from Figure 22 that
for most of the the lensed gravitational wave signal with
highest amplitude(µ1), they have magnification larger than 1.
Regarding this model, this suggests that most of our detected
events, like GW150914, could possibly be lensed versions
of their original (unlensed) signals. If this is indeed the
case, then by neglecting the possibility of magnification,
we have over-estimated the amplitude of our signals, and
thus underestimated the luminosity and redshift of these
signals. This would also lead to an over-estimate of the
source massess.Therefore, if we are to use the model results,
we will have to look for unlensed version of the detected
event instead.



Fig. 21. Probability distribution of magnification µ1 and µ2 of the two
dominant lensed gravitational wave signals from the study present in [27].
The Solid (dashed) traces show distributions before (after) applying the
detection threshold SNR > 8. The component masses of the simulated
events are sampled from power law 1 distribution.

Fig. 22. Probability distribution function of relative time delay δt1 and
δt2 of the two dominant lensed gravitational wave signals from the study
present in [27]. The Solid (dashed) traces show distributions before (after)
applying the detection threshold SNR > 8. The component masses of the
simulated events are sampled from power law 1 distribution.

After the whole injection campaign is finished, we can
make use of these probability distributions to help us
determine the probability that each searched candidate is
a lensed (unlensed) version of the original detected event.
We have also approached the researchers of [27] and they
agreed that we can collaborate on this project.

Fig. 23. Probability distribution of magnification µ1 and µ2 of the two
dominant lensed gravitational wave signals reproduced by myself. The Solid
(dashed) traces show distributions before (after) applying the detection
threshold SNR > 8. The component masses of the simulated events are
sampled from power law 1 distribution.

Fig. 24. Probability distribution function of relative time delay δt1 and
δt2 of the two dominant lensed gravitational wave signals reproduced by
myself. The Solid (dashed) traces show distributions before (after) applying
the detection threshold SNR > 8. The component masses of the simulated
events are sampled from power law 1 distribution.



IV. Conclusions

In this project, we used various targeted search methods
to lower the background noise in order to uncover possible
lensed / unlensed gravitational waves. The initial methods
including using LALInference posterior data and gstLAL
posterior data for searching are not good-enough methods. We
end up using the injection campaign method for the detected
events GW150914 and GW151226 and have successfully
lowered the background, which opens up a new window for
us to search for lensed / unlensed gravitational wave signals.
We have also reproduced the probability distribution of
relative time delays and magnification of lensed gravitational
wave signals through a singular isothermal ellipsoid (SIE)
lens model, which suggests that, given the model is correct,
most of the lensed gravitational wave signals would have
magnification larger than 1 and hence most of the detected
events so far could actually be lensed version of their
originals. Nevertheless, this still depends on whether there
is a significant gravitational lens between us (the observer)
and the source of gravitational wave, which we will have to
further work on after this project.

V. Future Work

A. Completing the injection campaign for GW150914

We have already produced a much smaller template
bank for lensed / unlensed version of the detected event
GW150914. We will use our template bank and do a full
gstLAL search run to look for possible lensed / unlensed
candidates of GW150914.

B. Running injection campaign for other detected events

We have almost completed full injection run for the event
GW150914. We will also conduct the full injection run for
other detected events including GW151226, LVT151012,
GW170104 and GW170608, GW170814 and GW170817.

C. Inferring the properties of the gravitational lens

Once we identify lensed gravitational wave signals, we
will go on and try to infer some properties of the gravitational
lens, including its mass, the lens-observer distance and the
lens-source distance. The parameters inference step requires
further literature review on gravitational lensing and involves
more calculations. Alternatively, we may try to use available
lens models, like in Section V we follow [27] to reproduce
the results for probability distribution of relative time delay
and magnification of lensed gravitational wave signals under
the influence of a singular isothermal ellipsoid (SIE), to
check how likely the identified triggers are under the effect
of the proposed models. We may also consider making use
of the package LENSTOOLS [28], which is being widely
used for lens optimisation in studying gravitational lensing.

D. Using galaxy cluster / supercluster catalogue

We will try to make use of the available galaxy cluster
/ supercluster catalogue to verify the presence of possible
gravitational lens between the detectors and the source once
lensed gravitational wave signals are identified.

E. Pipelining the search for lensed gravitational wave
signals

To make the search for gravitational wave signals efficient,
we may try to construct a pipeline (makefile) for the search.
This can make the process more time-efficient, and it will
also make error-finding easier.

F. Re-introducing the sky location problem to the project

We have neglected the alteration in sky location of
the source when we inject simulated lensed signals using
LALInference posterior samples in this project. In particular,
we need to investigate the range of sky location to search
for lensed gravitational wave signal, instead of using the
range suggested by LALInference. Figure 24 illustrates the
problem.

Fig. 25. An illustration of the sky-location problem on the project.

We will try to estimate the deflection angle for lensed
gravitational wave signals in the future. Yet, it is important
to note that the sky-location deflection addressed here is
known to be small (much less than a degree) even for large
lenses, especially when compared with the sky-localization
capabilities of the LIGO-Virgo detector network.

We will also try to find the correlation between the relative
time delay δt of lensed gravitational wave signals and the
corresponding sky-location of the source (i.e. right ascension
α and declination δ), or even trace the lensed gravitational
wave signals.
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