

Crystal Channelling for Hadron Therapy Accelerators

SURE/CERN Summer Student Programme 2022

Introduction

Intro: Crystal Channelling

- In a crystal:
 - Periodic structure
 - Continuous potential well
 - Trap & guide particle
 - Pass through without much energy loss

Potential plot of Si110 crystal of different curvature. Adapted from: Biryukov, Chesnokov and Kotov (2013)

Intro: Crystal Channelling

- With slight bending: 40.00 Similar potential 30.00 20.00 Slightly lower by centrifugal force Ueff Particles bend with crystal 0.00 **Beam extraction**
- Adv:

0

 \bigcirc

- Smaller size
- No power needed 0
- **Radiation hard** 0

Bend Si110

crystal

different curvature. Adapted from: Biryukov, Chesnokov and Kotov (2013)

Intro: Dechannelling

- Some particles will escape (dechannelled)
- Diffusion approach
 - Dechannelling Length $L_D(pv, R) \sim \frac{E_c(pv/R)}{E_c(0)}$
 - Decrease with pv
 - Fraction of channelled $\sim \exp(-z/L_D)$

p	v	E _c
Particle momentum	Particle velocity	Crystal Potential
1/R	Z	
Crystal Curvature	Distance travelled in Crystal	I

Histogram of exit angle combining channelling and dechannelling effect. Adapted from: Bellucci and Biryukov (2007)

Can crystal channelling be used for beam extraction in hadron therapy accelerator?

Crystal in Isolation

Varying Energy

Isolation: Methodology

- BDSIM (program that simulate beam transportation and interaction)
- Setup:

Proton cauaro boam (onvolono	x	x_p	
Floton square beam (envelope	0.4cm	5E-4	

Silicon 110 crystal (cross section: 4cm x 4cm)

- In the middle of a collimator (length: 30 mm)
- Rotated by half the bending angle
- 3 drift tubes (length: 1cm)

1 drift tube (length: 3m, radius: 1.5m)

y

0

 y_p

 $\begin{array}{c} \bullet \bullet \bullet \bullet \bullet \\ \bullet \bullet \bullet \bullet \bullet \end{array}$

Isolation: Results

- Beam energy from 400 to 1.078 GeV (KE: 140MeV) (in uneven steps)
- Diamond-shaped channelled region
- Dechannelled region (y value >0)

- Channelled region:
- Higher energy
 - Smaller spread in θ_{in}
 - Smaller spread in $\theta_{out} \theta_{in}$

 $\theta_{out} - \theta_{in}$ against θ_{in} plot at different energies.

Isolation: Results

- 1.078 GeV (KE = 140 MeV):
 - Typical energy in hadron therapy accelerator
 - Only 1 diamond region
 - Very large spread
 - Difficult to extract correctly bended
 - Not useful

- CERN
- **X** crystal channeling for typical hadron therapy

 $\theta_{out} - \theta_{in}$ against θ_{in} plot at 1.078 GeV.

Isolation: Results

• High energy:

- Distinct (de)channelling regions
- \circ ⇒Can make use of channelling
- More particles get dechannelled
- \Rightarrow Dechannelled region may be more useful

 $[\]theta_{out} - \theta_{in}$ against θ_{in} plot at 100 GeV.

•••

Isolation: Results

Isolation: Discussion

- Spread in θ_{in} : volume capture
 - Dechannelled particles can be capture

Low energy : Higher spread in θ_{in}

- Probability $w_S = const \frac{R}{(pv)^{3/2}}$
- More likely at low energies

 $\theta_{out} - \theta_{in}$ against θ_{in} plot at 7 GeV.

Ο

Isolation: Discuss

- Spread in $\theta_{out} \theta_{in}$: Diffusion approach
 - Fraction of channelled particle $\sim \exp(-z/L_D)$
 - \circ L_D decrease with beam energy

- Low energy:
- More dechannelling
- High Spread in θ_{out} & thus $\theta_{out} \theta_{in}$

Diffusion approach From Introduction
Dechannelling Length L_D(pv, R)~ E_c(pv/R)/E_c(0)
Decrease with pv

Isolation: Discuss

- X crystal channeling for typical hadron therapy acceleartors
- But...
- Higher energy radiotherapy exist (FLASH therapy)
- Still not high enough though
- Channelling maybe useful in the future

Illustration of FLASH therapy. Adapted from: CERN (2021).

Crystal in PIMMS

PIMMS: Methodology

- PIMMS lattice model from Rebecca
- BDSIM
- Beam energy: KE=1.2GeV (max energy PIMMS can deliver)

Illustration of PIMMS.

- Replace the extraction septum magnetic with
 - Crystal: Si110, Length 2 mm, Bending angle 150 µrad, Cross section 4cm x 4cm, in the middle of an 80cm collimator
 - Drift tube: Length 80 cm

50 turns, 2k particles

PIMMS: Results

- Phase diagram
 - Mostly similar
 - Slightly larger spread in x for PIMMS lattice with crystal

Phase diagram of particles corresponding to PIMMS with drift tube and crystal.

PIMMS: Results

- Number of particle pass through
 - Crystal has sig. less particle
 - Maybe applicable for future high energy medical accelerator

Number of particles against turn number plot corresponding to PIMMS with drift tube and crystal.

PIMMS: Points to Note

- Small no. particle
- Highly dependent on initial condition
 - Sometimes escape without even completing the 1st loop
 - Need more run to verify the result
- Small turn number (50)
- Crystal parameters not optimized

Conclusion

- For the parameter space covered, crystal channelling is not applicable in current hadron therapy accelerator
- However...
- At high energy, channelling has practical use

- If even higher energy therapy method is developed
- \Rightarrow Crystal channelling maybe useful in the future

Reference

- L. Nevay, S. Boogert, J. Snuverink, A. Abramov, L. Deacon, H. Garcia-Morales, H. Lefebvre, S. Gibson, R. Kwee-Hinzmann, W. Shields, and S. Walker, Bdsim: An accelerator tracking code with particle-matter interactions, 6 Computer Physics Communications 252, 107200 (2020).
- 2. V. M. Biryukov, Y. A. Chesnokov, and V. I. Kotov, Crystal channeling and its application at high-energy accelerators (Springer Science & Business Media, 2013).
- 3. V. Biryukov, Volume reflection efficiency for negative particles in bent crystals, Physics Letters B 765, 276 (2017).
- 4. S. Bellucci and V. Biryukov, Possibility of crystal extraction and collimation in the sub-gev range, Physical Review Special Topics-Accelerators and Beams 10, 013501 (2007).
- 5. L. Nevay, Status of crystal simulations with the geant4 routine (2020). L Badano, M. Benedikt, P. J. Bryant, M. Crescenti, P. Holy, A. T. Maier, M. Pullia, S. Rossi, and P. Knaus (CERN-TERA Foundation-MedAustron Oncology-2000 Collaboration), Proton-Ion Medical Machine Study (PIMMS), 1 (1999).

Credits: This presentation template was created by Slidesgo including icons by Flaticon and infographics & images by Freepik

••••

THANKS

Special thanks to Ken, Rebecca, Williams and Laurie

