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Preface

Li Ka Yue Alvin, Pang Yiu Yung
NSS Physics Insight — A short introduction to Special Relativity is a self-study textbook.

It is designed for NSS students and junior undergraduate students.

As a Physics undergraduate student, | have never imagined publishing an e-book in
my 4-years of studies. Here, | must deliver my thanks to those who helped me with this
project.

This e-book was originally the project work for Dr Lin Lap Ming’s course (PHYS3420 —
Topics in Contemporary Physics). For Physics courses (except for experimental courses), it
is really rare that students have to do a project. Dr Lin has truly provided us an
opportunity to exercise our special relativity knowledge, as well as creativity. | would like
to thank Dr Lin here, for without without Dr Lin’s course, this e-book would not have even
appeared! Dr Lin has also encouraged us to present our work at the 15t CUHK Physics
Student Conference, which made our work become known to many physics students and
teachers at CUHK, and finally lead to this golden opportunity of publishing this e-book.

After the conference, Professor Chu Ming Chung and Dr Leung Po Kin explained that
our work is somehow similar in nature to what they are doing for a e-learning project,
and granted us the chance to further polish our work and publish our work together in
their project. Since last year’s June, we have been working with the e-book and Dr Leung
and Professor Chu have given us a lot of useful advice and opinions throughout this
journey. | would like to express my gratitude of thanks to them.

My partner Yiu Yung is another person | must show my appreciation to. Without his
help and support, | may not be able to complete this whole work. | must also thank him
for his creativity and persistence.

As for myself, | have learnt a lot throughout this project, including how to type
equations quickly in Microsoft Office, how to make illustrations using Keynote in Mac,
and of course knowledge about Special Relativity. Many of my Physics teachers have
always said that being a teacher is the best way to learn Physics, and now | understand
why. Before you teach, you must make sure what you write and teach is correct. If you
want your readers / students to understand what you are teaching, you must first make it
clear to yourself first. Here is a quote from Albert Einstein that | really like :

“If you can’t explain it simply, you don’t understand it enough...”

Long story short. | better end my preface here before | try to write more.
Last but not least, allow me to thank everyone who helped with this project,
or simply those who changed my life once again.



Chapter 1 Pre-Requisite Knowledge W

« |

1.1 - Review on motions

In this section we will review some of the important concepts and physical quantities used to
describe motions.

Let’s consider a smart rabbit below.

The rabbit first moves 4 m from point A to point B, then moves 3 m from point B to point C.
What is the distance travelled by the rabbit?

Distance travelled is the total length of path taken by the observed object. It is a scalar quantity
which consists of magnitude.
In this case, the distance travelled by the rabbitisjust: 4m + 3m = 7m

In physics, we often care about the displacement of the observed object more. Displacement
is the distance between the starting position and final position of the observed object. It is a

vector quantity which consists of both magnitude and direction.

In this case,

Starting point of the rabbit : Point A Ending Point of the rabbit : Point C
The displacement vector is the red arrow in the diagram above.

The magnitude of the displacement s is given by the Pythagoras Theorem, which is

s=+3%4+42=5m

And the direction of the displacement is given by 8 = tan™?! (%)
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Let’s suppose the rabbit takes 2 s to run from point A to point C via point B. What is the average speed
of the rabbit?

Speed is a scalar quantity which shows how fast the observed object moves along its path of
motion. Generally, it is the distance travelled by the object divided by the travelling time.

Distance Travelled

Speed =
P Travelling Time
In this case, the speed of the rabbit is just : 72—:1 =35ms™!

In Physics, we often care more about the velocity of the object than its speed.

Velocity is a vector quantity which shows how fast is the change in displacement of the object. It
consist of both magnitude and direction.

Generally speaking, the direction of the velocity vector is the same as that of the displacement
vector. The magnitude of the velocity vector is just :

Displacement

Velocity=

Travelling Time
: o 5 _
In our case, the average velocity of the rabbit is just : 2—:1 = 25ms™!

Example 1.1

This time, the rabbit walks along a straight line ABC. It
moves from A to B for 2 s, and from B to C for another 2 s.

@ x“m R ,*____--_W,E'“ ______ X
A B C

(a) Find the total distance travelled of the rabbit from A to C.

(b) Find the total displacement of the rabbit from A to C.

(c) Find the velocity of the rabbit along AB.

(d) Find the velocity of the rabbit along BC.

(e) Is your answer in (c) and (d) the same? If not, find the
difference of the 2 values.

[Solutions]

(a) Total distance travelled =4 + 6 =10 m

(b) Total displacement = 10 m (to the right)

(c) Velocity along AB=4/2 =2 ms(tothe right)
(d) Velocity along AB=6/2 =3 ms (to the right)
(e) No. The differenceis+ 1 ms?
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From Example 1.1, we see that the rabbit’s velocity increases along AC. The rate of change of
velocity of an object is called acceleration. We define acceleration as

Change in Velocity

Acceleration =
Time dif ference

For instance, if the rabbit in Example 1.1 changes its velocity from2m/sto3 m/sin 0.5 s time,

3-2 _
then the acceleration of it will be o5 =2ms 2

Acceleration is a vector quantity. This follows that even if the object is moving at constant speed, if
it is changing direction, then its acceleration is also hon-zero.

The following schematic diagram summarises the relations between distance travelled,
displacement, speed, velocity and acceleration.

Displacement Velocity Acceleration
Vectors : \ _Rateof
(Magnitude 7~ change of
+ Direction) l
Scalars : Distance

(Magnitude) Travelled

Challenge 1.1
1. Which of the following are not vectors? B 8m Ax "mﬂ)—\’)
A. Displacement A
B. Acceleration 6 :
C. Rate of change of displacement mn
D. Speed C
.................................... X b
2. Peter walks leftwards 50 m, and then
60 m rightwards. What is his net <
displacement? (Take right as positive) . :
A 110m B. 50m (a) Find the displacement of the mouse along

the whole journey.

(b) Draw the displacement vector on the
diagram above.

(c) If the mouse uses 10 s to reach the cheese,

C.+10m D.—10m

3. Ina 100 m hurdles competition, Yiu

Yung finishes the race in 8 s. Find the find the velocity of the mouse.

average speed of Yiu Yung. (d) Suppose at t = 0 (The mouse at A starts to
A.800m/s  B.125m/s move), another mouse at D also walks
C.-125m/s D.-800m/s towards the cheese along DC. Find the

minimum speed of the mouse at D such
that it can reach the cheese before the
mouse at A.

4, Refer to the following diagram. A mouse at

A is walking towards a piece of cheese
through a path passing through B and C.
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If the motion of the observed object is under uniform acceleration (i.e. the acceleration is
constant), then we have 4 equations of motion describing the object.

We will just state the equations here without proof. You are, however, encouraged to proof
the equations of motion for uniformly accelerated motion in the Problem Set of this Chapter.

v=u+at s=ut+§at2

T—u

a=— v? —u? = 2as

where u = initial velocity, v = final velocity, t = time elapsed, a = acceleration, s = displacement

In this section we will illustrate the transformation of displacement and velocity from one inertial
frame to another in the non-relativistic point of view.

1.2 - Galilean Transform
Let’s consider the diagram below.

>

XV

Alvin’s frame Yung’s Frame

There is a rabbit in Alvin’s frame. According to him, the rabbit has position R (x, y).

Alvin’s friend, Yiu Yung, is at a distance rightwards from Alvin.What would be the coordinates of
the rabbit in Yung's Frame?

It is obvious that for the y’ coordinate, it is same as that of y.
But for the x’-coordinate, it will be changedtox’ = —h + x.
x" = (Try to sketch on the diagram above to make yourself
clear!)

Thus the coordinates of the rabbit in Yung’s frame willbe R" = (x’, y') = (- h + X, y).
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y 7
U : m

X

Alvin’s frame

XV

Yung’s Frame

Now suppose Yung is moving to the right at a uniform speed of u’ starting from time t = 0.

From Alvin’s point of view : -

From Yung’s point of view : -

Page 7

(b) Given that

Example 1.2

h

)

X
Alvin’s frame

frame at time t.
d(A+B) _ dA
dt  dt

+

yI
I

"

Initial position of Yung = (x, y) = ( , ).

After time t, the position of Yung = (x, y) = ( )

Initial position of Alvin = (X', y’) = ( , ).

After time t, the position of Alvin = (x’, y’) = ( ,

This time, let’s further assume that there is a rabbit in Yung’s
frame, which has a coordinate of R’ = (x’, y’).

"\R' ’ ’
X (x%y’)

-

dB
dt’

and

X

Yung’s Frame

(a) Find the coordinates of the rabbit R = R(x, y) in Alvin’s

d(ct)

’

= ¢, wherecis a
dt !

constant. Show that the velocity of the rabbit R in

Alvin’s Frame is given by :

(]
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[Solutions]
(a) R=R(x,y)=(x"+ut,y)

TChapter 1 Pre-Requisite Knowledge 0

(b) The velocity of the rabbit R in Alvin’s frame

dx _ d(x'+ut) dx’

d(ut) dx’

=7, —m —
- di dt

+

a T

The above equation which relates x and x’are called the Galilean Transformation of coordinates.

We will later see that this transformation is useful and good approximation only for speed of

objects much smaller than the speed of light c.

At that time, we will need another kind of transformation rule which is called the Lorentz

Transformation.

Challenge 1.2

1. Refer to the following diagram. Yung is moving to the right at a speed of u. A rabbit is

observed in Alvin’s frame with position R

X

Alvin’s frame

(a) Find the coordinates of the rabbit R’ in
Yung’s frame at time t.

(b) Show that the velocity of the rabbit in
Yung’s frame is given by :

_dx'_ +dx
Cialr T dt

Page 9

’

X
Yung’s Frame

c) Compare your result in (b) with the
result in (b) of Example 1.2. Explain
why there is a negative sign in front of
the “u” term in (b).

d) Will Yung know that he is moving? Or
will he see that Alvin and the rabbit is
moving?
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1.3 - Newton’s Laws of Motion h

In this section we will review about the 3 important laws of motion stated by Newton. They are
rather important as in classical mechanics, but it is as important in understand General Relativity.

The 1st Law :

An object is either at rest or in uniform motion if the net force acting on it is zero.

/When the “net force”

When a bus is moving inside my body is O,

at constant velocity, the| |l am either sleeping (at

net force acting on it rest) or working very

.must be zero. ) \hard at constant speed.,
b4 e ¥4

=

The 2nd Law :

The acceleration of an object is directly proportional to the net force acting on it, and
inversely proportional to its mass. Mathematically,
F = km

1]
‘(a
CuAl

il

_ _ N
] L /For the same mass, if the
'For the same force, as exerted force is twice as
my mass is smaller than| |large as the original, the
Yung’s, | will accelerate acceleration will also be
\doubled. )

‘much greater than Yung. _

*\// \// &

= =
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The 3rd Law :
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For every action force, there must be a reaction force. The pair of forces are equal in
magnitude, opposite in direction, acting on different bodies and are of the same nature.

~

If | happen to push ) (f happen to pull Alvin to

Yung to the right, | will the right, | will feel a

feel a reaction force reaction force pulling me

\pu_shing me to the Ieft.// to the left. —
L al” e

=

1] y
(C /
N
i

il

Example 1.3

Doraemon is now standing firmly on the ground surface.

(a) Draw a free-body diagram, showing all the force acting
on Doraemon.

(b) What is the net force acting on Doraemon at the instant
shown?

(c) A student claims that the pair of forces in (a) form a pair
of action-reaction pair. Comment on his statement.

(d) Infact, Doraemon is standing on the surface of the
Earth. Explain whether Doraemon is really “at rest” or
not.
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[Solutions]

TChapter 1 Pre-Requisite Knowledge @

(a) Refer to the following diagram

'..,_Normal Reaction

(b)
(c)

Weight

According to Newton’s 1st Law, the net force is O.
It is incorrect. Both the normal reaction and the weight

act on the same body — Doraemon.

(d)

In fact, the Earth is continuously self-rotating and

orbiting around the Sun, so in general Doraemon is
always changing direction, and hence not at rest.

Challenge 1.3

1. Fillinthe blanks :
(i) An object is either at rest or moving
with constant __(a)__ if the net
force acting on it is 0.

(i) In Newton’s 2"¢ Law, the net force
acting on an objectis __(b)__
proportional to the mass and
acceleration.

(iii) For every action force, there must
be a _ (c)__ force which has the

same __(d)__, opposite in direction,
acting on different bodies and are
of the same __(e)__.

2. Anastronaut is in a spaceship that is

orbiting around the Earth. He claims
the net force acting on himis0 as he is

in a state of weightlessness. Comment
on his statement.

Page 11

3. Refer to the following diagram. Batman
is climbing a rope which is hung firmly
from the ceiling.

(a) Draw a free-body diagram, showing all the

forces acting on Batman.

(b) It is given that Batman is instantaneously at
rest at the given moment. What is the net
force acting on him?

(c) State a pair of forces which have the same
magnitude.

(d) If the rope suddenly breaks, what would be
the net force acting on batman? Is it zero?
Explain your answer.
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Key Points
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1.1 Review on motion

(@) Distance, displacement, speed, velocity, acceleration

Displacement Velocity Acceleration
Vectors : _Rate of _Rateof
(Magnitude 7~ change of change of
+ Direction) l i i
Scalars : Distance Speed
(Magnitude) Travelled
(b) Equations of uniformly accelerated motions
1 2
v=u-+at s=ut+iat
v—u
@=— vZ —u? = 2as

1.3 Newton’s Laws of Motion

e An object is either at rest or in uniform motion if the net force acting on it is zero.

e The acceleration of an object is directly proportional to the net force acting on it, and

inversely proportional to its mass. Mathematically,
F = km

e For every action force, there must be a reaction force. The pair of forces are

equal in magnitude, opposite in direction, acting on different bodies and are of

the same nature.
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Key Terms

100 m hurdles 100 >k FEH# P.5 Acceleration JJ[1ZE[E& P.5
Action force {EFH ] P10 Atrest &k P.9
Average “F15 P.4 Displacement fizf% P.3
Galilean Transformation {Ifl[li%5%EE  P.8 Lorentz Transformation 252258  P.8
i

Magnitude E{H P.3 Mass & &= P.9
Nature M'& P.9 Net Force ;] P9
Newton £~ P.9 Opposite fHZ P.10
Proportional 5 EL431 P.9 Reaction Force K EF 1 P.10
Speed [ P4 Uniform acceleration ZJJj12E[& P.6
Vector 2 & P.3 Velocity 23 P4
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3. Johnand Kelly are running to same

1. A person standing on the ground. direction from the park. John starts 2
Which following statements are minutes earlier than
correct? Kelly and his speed is 18km/h. It is
1. The gravitational force acting on you known that Kelly’s speed is twice that
by the Earth and the force acting on John. When would
you by the Kelly can pass John?
ground are the action and reaction A. 1 minutes
pairs. B 2 minutes
2. The gravitational force acting on you C. 3 minutes
by the Earth is equal to the reaction D 4 minutes
force acting on you by the ground.
3. There is no reaction force acting on 4. From Galileo’s experiment, which
you when you are punching other. following statement is correct?
A. 1 only A. The speed is proportional to
B. 2 only the object’s weight.
C. 1and?2 B. The speed of the metal object
D 2and 3 is smaller than other one.

C. The speed of the object at

2. The bustravelling on the road with an same height to the ground is
acceleration. What is the change in the same.
velocity of the bus after 5 seconds for D. All of above are correct.
5ms~2 and 2 seconds for —5ms™2 ?
A 15ms™1!
B. 25ms™?!
C. —10ms™~1
D. 35ms™?!
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1. Under Galilean Transformation, when we are travelling in high speed and

try to measure the
speed of light. What values are we can measure?
a) The speed is 500ms™ .
b) The speed is 10000ms™
c) The speed is 0.5c
d) The speed is 1c
(which cis the speed of light)

2. The spaceship is moving at 500ms™ toward the Earth. At same time, a

missile has been

launching from the Earth toward the spaceship. The collision of them is after

3 minutes later.
(Assume both of them are not affected by external force)
(a) What is the speed of the missile?

(b) Meanwhile, the owner of the spaceship immediately know the missile is

coming. He turn the

spaceship opposite direct and try to escape. If the speed of spaceship still the

same, will the

missile attack it? If yes, how long after it launched?
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Structured Questions
[Question 1]

In a recent TV programme “#kiT 5 (X HL 72 3% 2 17 D7, the ending dance

In one part of the dance, the dancer moves 8 steps forward while shaking their hands

and fingers. And then jump 9 steps backward.

(&) What is the total distance travelled of the dancer at the end?

(b) What is the total displacement of the dancer at the end?

(c) Let’s assume that the dancer uses 8 seconds to move forward, and uses 6 seconds
to jump 9 steps backward. Find the respective average velocity of the dancer for
the forward and backward motion.

(d) Hasthe dancer accelerated during the forward and backward motion? Explain your
answer.

(e) Astudent claims that if the dancer has an extra step, he / she may have zero
displacement. Do you agree? If yes, state whether the extra step should be in the
forward motion or in the backward motion.
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[Question 2]

Consider the following diagram. Yung is at a distance h rightwards from Alvin. Yung is

moving to the right at a speed of u, while Alvin is moving right at a speed of v.

@

©

©

@

h

A e e e e >

7

y y

u
Y
z | S
X X
Alvin’s frame Yung’s Frame

Let’s consider the case of v = u. From Alvin’s point of view, will Yung move away

from him, move towards him or will he be at rest?

Let’s consider the case of v > u. Assume initially Yung's coordinate in Alvin’s frameis

Y = Y (h,y). Find Yung's coordinates after time t in Alvin’s Frame. From Alvin’s point
of view, will Yung move away from him, move towards him or will he be at rest?

Let’s consider the case of v < u. Assume initially Yung's coordinate in Alvin’s frameis

Y = Y (h,y). Find Yung’s coordinates after time t in Alvin’s Frame. From Alvin’s point
of view, will Yung move away from him, move towards him or will he be at rest?
Redo (a) - (c) from the point of view of Yung. Assume that initially Alvin’s
coordinatesin Yung's frameisA = A(—h,y’)
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[Question 3]

According to myths, the famous scientist Galileo once conducted an experiment on the
tower of Pisa by throwing 2 objects of different masses onto the ground. He wanted to
show that the acceleration of objects is independent of their masses.

@ Draw a free body diagram for one of the object, showing all the forces acting on it.
You may neglect air resistance.

() State Newton'’s 1st Law of Motion, and hence explain whether the object is at
rest or in uniform motion.

(© A student claims that in this case, there is no action-reaction force pair concerning
thefalling object. Comment on his statement.

(d) If Galileo used a metal ball and a very light feather for his experiment, what
would be the result? Does it violates Galileo’s conclusion? Explain your answer.

[Question 4]
The man try to across the river which has width 50 meter. The speed of the water flow is
flowing to downward.
(a) The man swims at 2m/s
(i) How long does he arrive the opposite river bank?
(ii) What is his vertical displacement?
(iii)What is the direction of his final position?
(b) The man swims to upward and has an angle 40° to the river flow.
(i) If he has no vertical displacement when he arrive the opposite side, what is his
speed?
(ii) If he swims to downward and keep the angle, what is his vertical displacement?
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[Question 5]
Flash man is running on the one direction road. A snipper, who is behind 150 meters from
Flash man, is trying to shoot Flash man. It is given that the speed of bullet is 1200 m/s.

(a) What is the time for the bullet to hit Flash man who travels in 100 m/s?

(b) If Flash man starts to speed up before the bullet just hit, what is the speed of Flash man
at least accelerated to?

(c) If Flash man keep moving at 200 m/s, his girlfriend(standing in front of him 50 meters)
try to say something to him. Does he hear his girlfriend’s voice first or hit by the bullet

first? Take the speed of sound is 340 m/s.

THE END
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In this section we will introduce the 2 important postulates in Einstein’s theory of Special
Relativity. These lay the foundation for the development of the theory.

2.1 - Postulates of Einstein’s Special Relativity Theory

A postulate is an assumption made for a theory or a law. The theory / law will be correct only if the
postulates are accepted to be true.

In Einstein’s Special Theory of Relativity, he laid down 2 important postulates. Let us now go
through the postulates one by one.

The 1st Postulate :

The speed of light is a constant (c) in all inertial observer frames.

‘What does it mean by It isn’t that difficult.

inertial observer frame? In general, you can
That’s seems quite consider the following
\unfamiliar to me? . simple case.

BV —\ /ﬂ

= -
4 o

= Yung Dr. Lin I

Both Doraemons at ‘
rest on the ground
surface and on a

uniformly moving bus
are inertial observerS/

J Speed =u
% g F

> e
In general, inertial frames are frames which are

either at rest or in uniform motion. This correlates
with Newton’s 1%t Law of motion! )




T Chapter 2 Relativistic Time and Length

©

) N
In this sense, all

accelerating frames, like

circular moving frames, _ ™
are non-inertial. ‘ | get it HOM;._J

N .

= =

.

It is important to note that even circular frames, which moves in uniform speed, are non-inertial,
because it is always changing its direction of motion, and it is thus accelerating!

L\i Speed = u
:-:
Using Einstein’s postulate, the speed of light ( ) is constant at

¢ =3 %108 ms~1in both inertial frames.

The 2nd Postulate :

The laws of physics are invariant in all inertial observer frames.
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Einstein also postulated that the physics we have been dealing with, like the usual F = ma,
electrostatics, waves and other theories are all the same in all inertial frame.

Although the mathematics might be slightly different, the overall result should remain the
same. The all-accepted laws, like the conservation law of energy and momentum, should not
change when we switch from a rest frame to a uniformly moving frame.

Challenge 2.1

3. You are now standing on the Earth’s
surface. Answer the following questions
using this assumption.

1. Which of the following(s) are inertial

observer?

(a) A man sitting on a chair.

(b) A driver driving a bus at uniform
velocity.

(c) A child cycling in circular motion
around a centre.

(d) A bird free-falling from the top of a

a) State the law of conservation of energy.
b) State Einstein’s postulates for his

building.

. State whether the speed of light is equal
to the constant “c” or is undetermined in
each of the following cases :

(a) A boy swimming along a straight line
with uniform speed sees a beam of
light passing.

(b) An astronaut in an accelerating
spaceship sees a beam of light
reaching his ship.

(c) A man running at light speed “c”
towards a light source sees a ray of
light coming towards him.

d)

Special Relativity theory.

According to your answer in (b), would
an astronaut in a spaceship moving in
uniform velocity sees the same physics
as stated in (a)? How about an
astronaut in another ship which
accelerates at constant acceleration?
What is the condition for an inertial
frame? By considering the Earth’s daily
and yearly motion, explain whether
you are an inertial observer or not.
Would it lead to any contradiction to
our daily observation if your answer in
(d) is ”no”? Try to think about it.

In the last question of Challenge 2.1, you are asked about whether or not you are an
inertial observer.

Certainly, if you consider the daily and yearly motion of the Earth, as it is always rotating, it is
obvious that we are always accelerating, and thus we are not inertial observers.

However, if we consider a small enough part of our Earth, such as the laboratory which we
conduct all the physics experiment, it can be regarded as a locally inertial frame, so the laws of

physics can still be held true, and will not lead to any contradictions.

You will come again to the idea of local inertial frame when you study General Relativity.
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the idea of synchronised clocks and proper time.

In this section we will show how we can deduce the time dilation equation. We will also illustrate

My clock reads My clock reads
0 second... 8 seconds

My clock reads

0 second My clock reads
@ 10 seconds...

1n

How come the time is
different? Does a moving
clock run sIower'-’

:i

What has happened in the above case? To answer this question we first need to understand the
concept of synchronised clocks.

What means by synchronisation? It means we need to make the clocks “ticks” at the same time.

@sn’t that easy. If you \\
/That’s easy, we just need  |consider 2 clocks very far

to set the 2 clocks’ needle | |away from each other, how
at the same position and | |can you ensure the other man
release them at the same | holding the clock can do as

Qime. y. W{;sly as you think?/

|
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/ Doraemon, let’s (—
5 "/‘ set the clock to “—”L e
8 g \0 second. U 4, =] 8
@ 2_J What? ]\
: g Ok / 5 ‘

Q

It would be quite unrealistic if you think you can synchronise clock easily, because even light needs
time to travel from one place to another, and thus it will lead to time dilation problem when you try
to synchronise clocks.

So how actually do one synchronise clocks? We shall discuss one method here.

One way to synchronise clocks is to start them together. Here is how it’s done :

Jn : |

We place a light source in the middle of the 2 clocks. We then turn on the light source and it will
send 2 light signals to both the clocks.

Once the clocks receive the signals, it will automatically start counting time. In this sense, we can
ensure that the clocks are synchronised.
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It is notable that simultaneity is NOT an absolute idea in relativity. We shall illustrate this idea in
the following example :

Example 2.1

At the instant shown, a
Doraemon is standing in the
middle of a moving bus of @
speed u. Two of his friends, A :
and B are standing at the 2 =
i

ends of the bus. Yiu Yung is at
rest outside the bus.

(a) Attimet= 0, Doraemon sends 2 light signals to A
and B simultaneously. In his point of view, will A and
B receive the signals at the same time? Or else
who will receive the signal first?

(b) Repeat (a) using Yiu Yung’s point of view.

[Solutions]

(a) Consider the following diagram.
: d d

From the figure, we can see that in Doraemon’s
frame, A and B will receive the signal at the same
time.

(b) Consider the following diagram.
e d d

Not yet reach B!

From the figure, we can see that in Yiu Yung’s
frame, A and B will NOT receive the signal at
the same time. A will receive the signal earlier
than B.
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Let’s consider the following case :

Inside a moving car, there are 2 mirrors.

At time t =0, a light signal is sent from the bottom mirror to the upper mirror. After being reflected
from the upper mirror, it returns to the bottom mirror, and stops the time counter.

How much time will have elapsed at the end as seen by Doraemon?
[Solutions]

The total distance travelled by the light s =

The speed of light in all inertial frame =

The time elapsed in Doraemon’s frame t = — (1)

As seen from Yiu Yung’s frame,

ut'/2

o

I.Il...l.l.l....l\“h’ LL A 1]

(LA LS LEL W
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The light signal does not travel along a vertical straight paths, but rather 2 diagonals.

How much time will have elapsed at the end as seen by Yiu Yung?

[Solutions]

The total distance travelled by the light s

©

The speed of light in all inertial frame =

The time elapsed in Yiu Yung’s frame t’

If you compare the 2 time intervals, t and t’, you will see that you can actually connect the both

results using one equation :
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where W is called the Lorentz Factor which we will come across again in Chapter 3. It \e
is defined as :
1
'y =
L
C2

The equation :

is called the “Time dilation” equation.

It is now clear why it would seems that “a moving clock” runs slower! Since u is always < c, the
Lorentz factor will always be larger than 1.

The time as measured by Doraemon, t, will hence always be smaller than the time measured by Yiu
Yung, t'.

We usually called the time interval between 2 events that occurs at the same point in space as the
proper time.

We may also refer the proper time as the time interval measured by the same clock, while the time
interval which requires the use of 2 or more clocks as the improper time.

Hence, the proper time in this case is the time interval measured by Doraemon.

v
10
9
8
7
6
5
A /
3 | |
2
1
0 c/2 c v

It is interesting to note that, when u tends to O, the Lorentz factor tends to 1, which leads to
the result thatt =t'.
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Typically, when u << ¢/2, the Lorentz factor is very close to 1.

We call the range of values u << c as the non-relativistic zone in physics. In such regions,
relativistic effect is not important and can be neglected.

Relativistic effect is only obvious when u ~ c.
Example 2.2

Bolt (f~%F) is often refer to the fastest
running man in the world. In the 2009
Berlin Olympics, he made the World
Record of completing a 100 m race in
9.58 s.

(a) Evaluate the speed of Bolt in the 100 m race.

(b) Compute the Lorentz factor for this case. You may

approximate the result by :
1 u

Y= u2 2¢c?
1=z

and write your answer as 1 + a, where ais a
constant.
(c) Suppose Bolt held a clock with him while he was

!

racing, and he measured time t at the end. Find %

where t' = 9.58. Assume t = 0 at the start of the
race.

(d) Evaluate the percentage error of the time
measured by the time-recorder and Bolt.

[Solutions]
(a) The speed = % =10438m/s
T2 2
(b) y=——=~1+5=1+—5 =1+121x10715

1—

NS

(c) t =yt=(1+121x10"1)¢
_t_ 1
¥ == (141.21x10~15)

(d) Percentage error

t'-t t
——?—1—)/—1

t
B 1
T (1+1.21x10715)

— 12 1.21x10713 9
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(%)
Challenge 2.2

1. Aplane is flying from Hong Kong to New York at a speed of 900 km / hr. The distance
between Hong Kong and New York is about 13000 km. The pilot of the plane uses a

clock to measure the time of flight. Another inertial observer on the ground also
measures the time interval.

900 km / hr 13000 km N ‘
Hong Kong New York
e

(a) What is the time of flight as measured by the inertial observer on the ground?
(b) What is the time of flight as measured by the pilot?

(c) Which observer measures the proper time? Explain your answer.

In this section we will show how we can deduce the length contraction equation. We will also
illustrate the relations between relativistic time and length.

- u
‘ . u
S l My clock reads ‘
-w _d |
\_/ 7+~ _0second... } —
Qeecids
"
| L& £3N -
My clock reads l & g u
t’ second... e . H
‘/My clock reads ’
e (t second...
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In the above case, (Doraemon / Yiu Yung) measured the proper time. \e

In relativity, we define the length measured by a person co-moving with the object to be
measured as the proper length.

In the above case, the proper length Lo is the length measured by Doraemon, but
Doraemon measures the improper time.

The length measured by Doraemon is :
LO — ut’

On the other hand, Yiu Yung measures the proper time but he measures the improper length.

The length measured by Yiu Yung is :

L=ut
If we combine the above 2 equations, we can get :
Ly ut’ t'
Tou Y
L ko
|4

Hence, we can see that the proper length of objects is contracted if it is measured by an
observer who is not co-moving with it. We call this effect length contraction.

It is notable that only lengths which are along the direction of motion will be contracted. For
instance :

In the eye of an observer on the ground, the object in blue will be seen as :

only the width of the object is contracted, but the height remains the same.
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Example 2.3

Let’s consider a typical bus of length 5 m. Dr. Lin is sitting on
the bus while Alvin is on the ground.
5m

(a) What is the proper length of the bus?

(b) If the bus is moving along a straight line at speed u,
what would be the length measured by Alvin? Work out
your steps clearly.

(c) How fast should the bus move we want the measured
length by Alvin to be half of the original length of the
bus? How about one-third of the original length?

[Solutions]
(a) The proper length =5 m.
(b) The length measured by Alvin is the improper length L,

L u?
sowehaveL=—==5 [1——
y c

(c) If we want the measured length by Alvin to be half of
the original length, then we have :

5 u?
i B Wl
2 c?

V3

u=—

2

If we want the measured length by Alvin to be 1/3 of
the original length, then we have :



Challenge 2.3

1. Let’s usredo example 2.3 with a 2-D
situation.

This time, the bus moves at a speed of u along
a path which makes an angle 6 with the
horizontal x-axis. Alvin is on the x —axis while
Yiu Yung is on the y-axis.

a) Write down the expression for the
length of the bus measured by Alvin
and Yiu Yung respectively, in terms of u
and 6.

b)

d)
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Let us set @ to be 45°. At what speed of
u will both Yiu Yung and Alvin measure
the lengths of the bus to be three-fourth

of the oirirginal Iéﬁgth.

Use the speed u you evaluate in (b). At
what angle can the measured length by
YiuYungtobe 45  of the original?
What will be the measured length of

the bus by Alvin at this speed and angle?

Consider a new coordinate system u-v
with Dr. Lin’s bus as the origin. How
would Yiu Yung and Alvin move on this
new coordinate grid? Sketch a diagram
to illustrate your answer.

If 8 =90°, what will be observed by
Alvin? Explain your answer.

Suppose that Yiu Yung is in fact moving
towards the positive y-direction.
Explain whether he can measure length
contraction of Dr. Lin’s bus.
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Key Points

2.1 Postulates of Einstein’s Special Relativity Theory

(@)Postulates of Special Theory of Relativity
The 1st Postulate :

The speed of light is a constant (c) in all inertial observer frames.

The 2nd Postulate :

The laws of physics are invariant in all inertial observer frames.

2.2 Time Dilation

a) Synchronisation of clocks :

Z .

8 ﬁ{ =S é 8
:—.—:

We place a light source in the middle of the 2 clocks. We then turn on the light source
and it will send 2 light signals to both the clocks.

Once the clocks receive the signals, it will automatically start counting time. In this
sense, we can ensure that the clocks are synchronised.

(b) Time Dilation Equation :

©



Length contraction

(@)Length Contraction Equation :

P
14
(b) Lorentz Factor :
_ 1
y = —
)
Key Terms
Accelerating IFEES P.2 Automatically BEih P.5
General Relativity EFEHE A P.3 Co-moving [EIFF3EE) P.12
Contraction #@&%2 P12 correlate  f. EHBRME P.1
Dilation SER P.4 Ensure &R P.4
Inertial Bt P.1 Invariant  A1EEE P.2
Laboratory BEEE= P.3 Light source J5iR P.5
Locally inertial frame ~ SEREMAAE P.3 Lorentz Factor  Z5fmz4 A2 P.9
Non-relativistic ~ 3FAH¥] P10 postulate 1RE8 P.1
Proper length EaEREEEm P12 properTime TEHBNREEREFILE PO
Sl tNEZEAFMmEINRE B BE1E 2 P = 2 RUIRF BB
Simultaneously [ P.4 Synchronisation [EF P.4
Tendsto 8N P.9 Unrealistic AIRE P.5
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Chapter Exercise

3.  Find the proper length of the rocket

1. If you siting in the rocket travelling when it is moving in ¢/2 relative to the
close to speed of light. Which following Earth, where cis the speed of light, the
is correct? one on Earth measured its length is L/3.
A. Having infinite life time A. EL
B. Being a fat/tall guy 3 fL
C. Your time is longer than others 2
by measuring from you than the C. %L
guy in the Earth. D. L
D. Your time is shorter than others
by measuring fromyouthanthe 4. The proper time of the rocket in Q3 is
guy in the Earth. T, what is the time inside the rocket.
A. £
2. Choose the best answer to fulfill the 12
following situation. Peter measured a B. 5T
super-hero across the sky. He thought C. iT
speed of the hero was 2000 meters per 5 f
second. '
A. The hero seemed taller.

B The hero seemed shorter.
C. The hero was a point.
D Peter can’t see the hero.
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1. Complete the following summary.

@

()

©

d)

©

®

Einstein proposed 2 postulates for his Special Theory of Relativity. The 1st one is that, the
__i__oflightis constantin all inertial reference frames. The 2nd one is that, the laws of
physicsare___ii__inall inertial reference frames.

In relativity, __iii__is NOT an absolute idea. That is, it is not always true for 2 events to
happen at the same time if we consider 2 different inertial reference frames.

The mystery of “a moving clock runs slower” can be solved by the explanation of time v
The time interval between 2 events measured at the same position in space is called the v .

Itis an importantideato_ vi_ clocks before use in relativity. We have to make sure the
clocks we use are in phase.

Proper length refers to the length of the object which is measured by an observer_ vii with
the object. If any other observers which is not moving with the object measures the length of
the object, the length will be_ viii___than expected. This effectis called  ix

By consider the Lorentz factor, if the speed of the object is much smaller than the speed
of light, x__effect is not significant and it will reduce to the normal Newtonian result.
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[Question 1]
Try to show your steps clearly in derivate the Lorentz Factor :

[Question 2]

Consider the problem in challenge 2.3. We now want to extend our discussion to a 3-D
situation.

This time, the bus moves along a straight line in 3D which makes an angle 8 with the z -
axis and an angled with the x - axis. Alvin, Yiu Yung and Doraemon stand on the x, y and z

- axes respectively.

@ Express the length of the bus measured by Alvin, Yiu Yung and Doraemon respectively.
Label the length as La, Ly and Ld respectively.

() Suppose 6 = 90°, what would be the value of Ld? Explain your answer briefly.
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© Suppose ¢ = 90°, what would be the value of La? Explain your answer briefly.
(d Suppose ¢ = 0° what would be the value of Ly? Explain your answer briefly.

() Suppose u=0.5c, what should be the size of ¢ and 6 if:
() Wewant the length contraction of La to be the largest?
(i) Wewant the length contraction of Ly to be the largest?
(i) We want the length contraction of Ld to be the largest?

() Let'ssuppose u=0.5c, 8 =45°and ¢ = 45°. Define a newquantity

(A8)? = (Ax)? + (8y)* + (A2)? — (At)?
where At, Ax, Ay and Az are the change in time, change in length along x-axis, y-axis

and z- axis respectively. Compute the AS?for Dr. Lin’s bus if At =1 s.

[Question 3]

An astronaut in a spaceship travels to Proxima Centauri, which is approximately 4.2 ly away
from the Earth. The speed of the spaceship is 0.70 ¢ ( ¢ = speed of light in vacuum) relative
to the Earth’s frame.

(a) Draw a picture to show the situation of the problem.

(b) What is the proper length of the distance between Proxima Centauri and the Earth?

(c) How faris Proxima Centauri from the Earth, as seen by the astronaut in the spaceship?

(d) How long does it take for the spaceship to reach Proxima Centauri, as seen by an
observer on Earth?

(e) How long does it take for the spaceship to reach Proxima Centauri, as seen by the
astronaut in the spaceship?



TChapter 2 Relativistic Time and Length

©

[Question 4]- [The twins paradox]

T

There was once a pair of twins Einstein and Newton. One day, Einstein rode on a
spaceship and leave Earth at a speed of u (u < c) relative to Earth, and after 5 years later
Einstein returns to Earth at the same speed u.

According to Newton, who is on Earth, because “a moving clock runs slower”, Newton
concluded that Einstein will seem to be younger on his return.

However, in Einstein’s frame of reference, his spaceship was at rest while Newton and the
Earth is moving away and back to him. Once again, because “a moving clock runs slower”,

Einstein concluded that Newton will seem to be younger when Einstein return to Earth.

Who is correct? What is wrong with this question? See if you can figure out the
flaw in this question. (Hint : Think about the postulates of Special Relativity...)

THE END
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In this section we will show that under the 2 postulates of Special Relativity, the Newtonian
Galilean Transformation will lead to problem. This will motivate us to introduce a new
transformation rule - The Lorentz Transformation, in the next section,

3.1 - Failure of Galilean Transformation

Recall in Chapter 2, we have learnt the 2 important postulates of Einstein’s Special Theory,

The 1st Postulate :

The speed of light is a constant (c) in all inertial observer frames.

The 2nd Postulate :

The laws of physics are invariant in all inertial observer frames.

/’Why willitleadto /Because it will violate )
problems in relativity if one of the postulates
we use Galilean in relativity. Let me
Transformation? 2 show you why. o
\’/’ /'/
‘M Yung

LLet’s consider the situation in

chapter 1, where Alvin is at rest in
his frame, and you (Yung) is moving
relative to Alvin at a speed u

—\ o o
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y Y, C@}R’(xtv')
u

XW

X

Alvin’s frame Yung’s Frame
Revision :
Complete the following table :
From Alvin’s point of view : = Initially position of Yung = (x, y) = ( , ).
- After time t, the position of Yung = (x, y) = ( , )
From Yung’s point of view : = Initially position of Alvin = (x’, y’) = ( , ).
- After time t, the position of Alvin = (X, y’) = ( , )

What will be the position of the rabbit R in Alvin’sframe?

After some time t, the position of the rabbit R will also change by a smallamount  x. If we

divide both side of the above equation by t, we will get :

Ax _ ulAt - A AL
At At X

Recall that in Chapter 1, we have learnt that the rate of change of displacement is known as the
velocity. Therefore, we can write the above equation as :

vy =u+ v,

where vy is the velocity of the rabbit in Alvin’s frame, u is the velocity of Yungin Alvin’s frame,
and wis the velocity of the rabbit in Yung's frame.

Now, if the rabbit is moving at a speed of ¢ (speed of light) in Alvin’s frame, then,
c=u+ vy
and hence
I
Vg = C—Uu

but it violates Einstein’s postulate that, the speed of light should be invariant in all inertial reference
frame!

#Note : The speed of light is different in different frame in the above situation!
Page 39 Page 39
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That is why the Galilean Transformation rules cannot be used in relativity!

Galilean transformation is only a good approximation for speed much lower than the speed of
light (non-relativistic), but it will eventually break up when it comes to relativity.

To solve the problem, we will need a need set of transformation rules, which can take into account

the relativistic effect, and is known as the Lorentz Transformation. You will learn more about it in the
next section.

Challenge 3.1

1. The Earth self-rotates about its axis of rotation once every 24 hours.

The radius of the Earth is 6370 km. In this question, assume that the
Earth is a perfect sphere.

(a) If you stand at rest on a point along the Equator of the Earth, find your speed due to the
self-rotation of the Earth and express your answer inm / s.

(b) Suppose there exist a train which can travel at a speed of 0.999999 c (c = speed of light in
vacuum) along the equator. Find the speed of the train according to an observer at rest in
the outer space using Galilean Transformation.

(c) State whether your answer in (b) is physically correct. If not, explain your answer briefly.

(d) A man inside the train in (b) uses an instrument to emit a beam of light opposite to its
direction of travel. State the speed of the light beam.

(e) Repeat (d) if the beam of light is emitted along the direction of travel of the man.

Of course not. You

So, what is Lorentz have all the tools you
Transformation? Do we need to derive the
need to know any new equations of Lorentz

or fancy mathematics? Transformation!

\ \

/
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3.2 - Lorentz Length Transformation

In this section we will derive the equations of the Lorentz Transformation of Length.

Let us consider the following situation. The S-frame is at rest, while S’-frame is moving along the
positive-x direction at a speed u. There is a point P in the diagram.

S frame S’ Frame

B

g_. Speed = u

k T
ut :
"

In general, there are 4-coordinates for every point in the spacetime : [t, x, vy, z]. t refers to the
time-coordinate, while x, y and z refer to the spatial coordinates.

1T

’

XVV

Let’s call the coordinates of point P in the S-frame as P = (t, x, y, z), and that in the S’-frame
asP =(t,x,vy, 7).

Note that, X’ is the proper length of an imaginary horizontal rod joining the y’ axis and point P in
the S’-frame.

The corresponding improper length of that “rod” in the S-frame would be

!/

Hence, x can be related to x’ by : X
’ y X=ut +—
Y
where s the Lorentz factor.
By rearranging the terms, we have :
X' = y(x — ut)

This is the first result of the Lorentz Length transformation.

Page 41 Page 41



IChapter 3 Lorentz Transformation @

Example 3.1

Now, we try to redo the above procedures from the point of
view of the S’ frame observer.

S frame S’ Frame

e
(a) Find a relation between x’ and x in terms of ut’.
(b) Make x as the subject of the equation in (a).

[Solutions]
(a) Note that x is the proper length of an imaginary
horizontal rod joining the y-axis and the point P in the

S-frame. The improper length in the S’ frame would be

X i i X
—. Hence, the relation can be writtenas x’' = —ut’' + -
1 14

(b) x =y(x' + ut’)

Therefore, we get the 2 important length transformation rules under the Lorentz’s transformation.

X' = y(x — ut) and x = y(x'+ ut)

Page 42 Page 42
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Challenge 3.2

1. Recall, from the Lorentz Length Transformation, we have :
x' =y(x—ut) and x=yx' +ut')

(a) Make x as the subject for the equation x' = y(x — ut).
(b) By comparing your result in (a) with the equation x= y(x' + ut’), determine an equation
relating t and t".

(Note : The resulting equation is the Lorentz Time Transformation equation.)

(c) Write out explicitly the equation of the Lorentz Factor Y.
(d) Find the value of ¥ when the speed “u” is much smaller than the speed of light. Hence

show that the Lorentz Transformation of Length reduces to the usual Galilean
Transformation.

3.3 - Lorentz Time Transformation

In this section we will derive the equations of the Time Transformation under Lorentz
Transformation.

As we can see from Challenge 3.2, we have the relation between t and t’ (in S-frame and S’ frame)

as the following :
t=vy|t + ux

Similarly, if we make x" as the subject for the equation x = y(x' + ut'), and compare it with the
equation with x' = y(x — ut), we can get another time-tranformation equation :

t’=y(t—§)

The above 2 equations are the time-transformation equations under the Lorentz Transformation rules.
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Key Points

3.1 Failure of Galilean Transformation

(@) Failure of Galilean Transformation
The Galilean Transformation rules fail when we try to investigate relativistic motions
(motions with speed very close to the speed of light).

This is because it may violate Einstein’s postulate that the speed of light is invariant in
all inertial reference frames.

To resolve the problem, we have to introduce a new kind of transformation rules named the
Lorentz Transformation rules.

3.2 Lorentz Length Transformation
(@) Lorentz Transformation Rules of Length

S frame S’ Frame

% T %
ut R

| |
We can relate the spatial coordinates x and x" in S frame and S’frame by the Lorentz
Transformation equations which are as follow:

X' = y(x — ut) and x = y(x'+ ut)
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Lorentz Time Transformation

(@) Lorentz Transformation Rules of Time

Using the equations of Lorentz Transformation of Length, we can retrieve the 2 equations
governing the relations between t and t’ as follow:

t=y(t’+“c—’§') and t’=y(t—3)

C2

It is notable that the Lorentz Transformation equations reduce to the usual
Galilean Transformation rules when u << ¢ (i.e. Non-relativistic).

These equations are very useful in our discussion on Relativity.

Key Terms

Approximation {HE P.3  Corresponding HHE P4
Einstein =FINHHE P2 Imaginary 1{EfH P.4
Invariant A~ FHF P2  Lorentz Factor i as IR P.4
Lorentz Transformation Z5{f225%% P3  Proper length TEAHETNEIZ ST P4
i S IR T E RN RE
Spacetime HFZE P4  Violate =YV P.2
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What the proper time pf moving frame

means?

A. The time measured for moving
frame by the rest frame

B. The time measured for rest
frame by the moving frame

C. The time measured for moving
frame by the moving frame

D. The time measured for rest
frame by the rest frame

For the length measurement in front of
the rocket, which is head-on moving

towards the observer(rest) in speed g

Which following statement is correct?

A. The length of rocket contracted
to 1/2.

B. The length of rocket extended
to 2.

C. The length of rocket extended
to 1.15.

D. The length doesn’t change.

Page 45
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A and B can be observed by each other.
When A is moving in very high speed,
e.g close to g, B is staying at rest. Which

following is the best statement?

A. Length contraction and time
dilation occurs in A and B.

B. Length contraction occurs in A
while and time dilation occurs
in B.

C. Length contraction occurs in B

while and time dilation occurs
in A.

D. We don’t know as the observer
is unknow.

What is the improve by using the
Lorentz transformation instead of using
Galilean Transformation

A. The observable speed must
slower than speed of light.
Except light.

B. The speed of an object will
change as the observer
changed.

C. The observable speed is
different in different observers.

D. All of above are not correct.

Page 45
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1. Let us consider a particle moving in the polar coordinate system.

— XL .

The trajectory of the particle is given by r = 3, which is a circle of radius 3, centred at the origin.

In an S’ frame, which is rotating about the origin, the particle moves at an angular speed of

w=1x108rad/s.

(@) Write down the 2 postulates of Einstein’s theory of Special Relativity.

(b) What is the tangential speed of the particle, as seen from the S’ frame?

(©) Itis known that the S’ frame completes one cycle of rotation in 10 seconds. The S’ frame is

also at a radius 3 away from the origin.
l.

Page 46

Il.
tangential speed of the particle? Use Galilean Transformation in this question.

V.

V.

Find the angular speed of the S’ frame.

toget physical answer?

Complete the summary below:

Suppose we have another S frame of radius 3 which is at rest. What would bethe

Is your answer in (ii) physically correct? Explain your answer.

What Transformation rules should we use to tackle this problem if we want

Galilean Transformation will fail when we try to deal with motions with speed very

close to the speed of
only a good approximation for

. Therefore, we say that Galilean transformation is

motions.
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[Question 1]

Consider 2 inertial reference frames S and S’. S is at rest while S" is moving at a uniform speed u
relative to frame S. Suppose there are 2 events, Aand B, having spacetime coordinates (t1,x1) and
(t2, x2) respectively in frame S. Aand B happen at the same spatial position in frame S.

a) Write down the relation between xiand x,. (Hint : What does it mean by same spatial position?)

b) Find the corresponding time coordinates tiand t/of event A and B in frame S’ using
Lorentz Transformation of Time. Hence find the ratio of &': tin terms of t3, t;, u and x1.

c) Suppose that event Aand event B happen at the same time as observed from an observer
in frame S’. What is the ratio of ti': &' ? Write the the actual ratio.

d) Using (c), or otherwise, show that:

2
_cf(ty —ty)
2x
e) Wedefine a new quantity, called the spacetime interval, as

As? = — (cAt)? + Ax?
where At and Ax are, respectively, the differences in temporal and spatial separation between

the 2 events.

(1) Show that the spacetime interval between event A and B in the S frameis

ASZ - _Cz(tz - tl)z

(1) Show that the corresponding spatial coordinates of events A and Bare
Xy = y(x — uty) and X'g = y(x— ut,)

Hence show that

!

X'g —Xp = yu(t; —tz)
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(111) Show that the spacetime interval between event Aand B in the S’ frame is

As? =
(Hint : You may find it useful to express the Lorentz factor in the form of
1
Y= —uz
-z

(IV) What can you conclude about As? and As 2?

[Question 2]

Nowadays, many technologies is applied the effects of the relativity. Can you give out some examples
that the special relativity is useful in our daily life and explain briefly, in term of what you learnt in
these chapters, how they works.

[Question 4]

Complete the steps for the derivation of the (i) Lorentz Transformation of Time and (ii) Lorentz
Transformation of Length, such that give out the equation:

t = y(t’+ﬂ) and x'= y(x — ut)

c2

[Question 5]- [The Quidditch Cup]

Harry Potter

r
g |
- A
.
Bludger
&
Malfoy

In the novel series “Harry Potter”, there is a kind of competition called the “Quidditch”. In each
match, each team has to hit a bludger to the goal in order to score points. Each goal corresponds
to 10 points. The team which gets 150 points first wins the match. In each team, there is a seeker
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whose major goal is to catch the golden snitch which is worth 200 points. Once the seeker gets the
snitch, the match ends immediately with the winning team as that which the seeker belongs to.

In a match, Gryffindor and Slytherin are matching against each other. Near to the end of race,
Gryffindor gets 50 points while Slytherin gets 140 points.

Now, Malfoy is at rest while Harry Potter is moving horizontally at a speed u relative to Malfoy,
chasing the snitch. At the same time, one of Malfoy’s teammate hits the bludger and it is flying
towards the goal.

Define the following events: (A) Harry Potter catches the snitch, and (B) The bludger reaches the
goal, with the spacetime coordinates (t', xi)and (t, x2') in Harry’s frame. In Harry’s frame, events A
and B happen at the same time.

a) What is the relationship between tiand t,?

b) Show that the corresponding time coordinates of the 2 events in Malfoy’s frame are
ux; _ ’ A
t1=y(t{+c—21) and tz—y(t1+c—2)
c) Compute t2 - t2 and express your answer in terms of x1', x2' and
d) If Malfoy wants his team to
[.  Win the match, what should be the relationship between xi/and x,’? In this case,
would Harry sees the snitch in front of the goal, above the goal or beyond the
goal?

[I.  Lose the match, what should be the relationship between xi/and x,’? In this case,
Would Harry sees the snitch in front of the goal, above the goal or beyond the goal?

[ll.  Getadraw in the match, what would be the relationship between x/and x2"?In
this case, would Harry sees the snitch in front of the goal, above the goal or
beyond the goal

THE END
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Chapter Starters...

In the above comic, Calvin tries to test the theory of relativity using his wagon (IU#& ). Try to
answer the following questions to see if you still remember the special relativistic effect on time
and lengths you have learnt in Chapter 2.

(a) In the comic, Calvin tries to increase his wagon’s speed to 30 mph (miles per hour). Given
that 1 mile is about 1.6 x 103 m. Express 30 mph in terms of meter per second.

(b) Let’s suppose that Calvin also carries a clock during his drive. State whether there will be any
difference between Calvin’s clock and Hobbes's (the tiger) clock. Explain your answer.

(c) If there is an observer standing on the ground at rest and he carries a clock to measure the
time used for Calvin to complete the whole journey, whose clock (Hobbes’ clock or the
stationary observer’s clock) would measure a longer time?

(d) At the end of the comic, Calvin says that Einstein is a fraud (1) because time HAS NOT
slowed down even though he and Hobbes are going faster. Do you agree? Can you explain

what is wrong in his experiment?
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4.1 - Differentiation at a First Glance

In this section, we will try to illustrate the idea of differentiation. We will also try to show the
relationship of differentiation with velocity and acceleration.

Recall in Chapter 1, we say that velocity is defined by:
ADisplacement

ATime
where ADisplacement and ATime are the change in displacement ({i7f%44%#) and change in

time respectively.

Velocity =

Now, consider the following Displacement — Time Graph (fizfZH5[&[E) of a moving point object :

Displacement (m)

)

> Time (s)

If we ask what is the average velocity (‘535 ) between point B and C, then the answer would

just be :
Xp — Xz

Vv =
avg tB _ tA

But if we ask for the instantaneous velocity (7t 2E/%) of the object at point B, what would it be?

The situation (15)5) is like we take a photo of a falling water droplet
(7K>p4). Obviously (Z87/4), we know that the droplet is moving
downwards with a certain value of speed, but in the photo, it is NOT
moving, so what would be its instantaneous velocity? Should we say
that it is instantaneously at rest (G#fE]EFF)?

Of course it is NOT! But how can we persuade (55 fk) ourselves mathematically?
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Historical Facts...
2nd Mathematical Crisis — The “Unmoving Arrow” (— K& 5% - BEFE)

ke

Ancient Greek philosopher (£7£57) Zeno of Elea (Z &%) once proposed (f&H!) a paradox (1)

“The arrow paradox” which is quite related to the 2"¢ Mathematical Crisis. Here is the paradox :

One day, Zeno was walking together with his students while he suddenly started a

conversation with them.

Zeno : Is a shot arrow (5 H{Y&T) moving or not moving?
Students : The arrow must be, needless to say, moving.
Zeno : True, in every people’s eyes, the arrow is moving. However, does the arrow

have its position in every single instant (&—#[E])?

Students : Yes, teacher.

Zeno: In every of such instant, does the arrow occupy ({57) the same space (Z5f])
and volume (§81&)?

Students : Yes, teacher.

Zeno: So, in one of these instants, is the arrow moving or not moving?

Students : Not moving, teacher.

Zeno: In one instant, the arrow is not moving, so how about the other instants?

Students : The arrow is also not moving in the other instants.

Zeno: So, can we conclude (455) that a shot arrow is not moving?

The paradox is, a shot arrow is both moving and not moving!
This is similar (fH{1) to that of the photo of a falling water
droplet. This paradox, fortunately (F£#i), is finally solved

>

by introducing the idea of differentiation (fi{47) by Isaac
Newton (% - 4-1H) and Gottfried Wilhelm Leibniz (EF4&{#
HE - HAREZL).

How can we find the I’ll show you the way. The point is
instantaneous velocity of a | |you have to make everything as
moving object? small as possible.
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We magnify (fix X) the original graph around point B. Very near to the point B we define (‘E%)
two points B* and B :

Displacement (m)

Time (s)

The slope (#}%) and hence the average velocity between the points B* and B will be :
x_|_ — X_
v = e—

Wt —t

If we further magnify the graph and push the two points B*and B closer and closer to the point B,
we will be able to get the “slope” and thus the instantaneous velocity of the object at point B.

This is the idea of differentiation ({#(47). To formally illustrate this idea using mathematics, we can

try the following approach :

Suppose that the displacement s of the object at time t can be described by the function (L&) :
s = f(t)

The displacement of the object at time t =tg is s =sg = f(tp).

After a sufficiently short (/& %55 HY) time At, the displacement of the object becomes
s = spyat = f(tg + A).

Then, the instantaneous velocity of the object at point B will be :
_ flg+A0) - f(tg) _ f(tg +AL) — f(tp)

VB = (tg + At) — tp At

If we force At to become very close to “0”, we will make the right hand side of the function
become a limit function (fx{E.LK#S). [Note : You can learn more about limits in the Limit Chapter.]
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_ . f(tg +At) — f(tp)
vg = lim
At—0 At

This limit function is actually called differentiation by first principle ({£EANFE K &%), and the

above function can be written as :

o= 1 f(tg + At) — f(tp) _ df (t)
im —

v =
B ™ Atso At dt

You can learn more about differentiation in the Differentiation Chapter. Here, we will only list
some of the important rules and results you may find useful in doing exercises.

Mathematical Tools...
Important Results and manipulation in Differentiation (£} 45 E4EE R 775)
IMPORTANT RESULTS
» Lo=0 i
P (c) = (c is a constant)
d ny — n-1
@ a(x ) =nx n=1)
® a(ex) =e* (e is the natural number)
O) d 1 = ! In is th [1
a(n(x)) == (In is the natural log)
d B
® a(sm(x)) = cos(x)
d .
® a(cos(x)) = —sin(x)
d
4 — cec?
@ - (tan(x)) = sec?(x)
a(sec(x)) = sec(x) tan(x)
© -
Tx (csc(x)) = — csc(x) cot(x)
d
—_ I 2
- (cot(x)) csc?(x)
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IMPORTANT MANIPULATIONS

d d d
@ a(f(x) +g(x)) = a(f(x)) + a(g(x))

d d .
@ E(Cf(x)) = ca(f(x)) (c is a constant)

©) Product Rule :

d d d
—(F@xg(@) = f(x) = (9()) + 90— (f(2))

@ Quotient Rule :

d <f(x)> WL (@)~ f0) 52 (9)

dx gl g(x)?

® Chain Rule :

d _df(g) dg(x)
2 fe() = X

dg dx

cﬁﬁ>ExampIe 4.1

Consider the following displacement-time graph of an object. Its trajectory (/) can be
described by the function :

f(t) = —t? + 4t

where t is the time of travelling.

Displacement (m)

Time (s)

(a) What is the average velocity of the object from t =0 to 4s?

(b) Show, by first principle, that the instantaneous velocity v(t) of the object at any time t is :
v(t) = -2t +4

(c) Find the time when the instantaneous velocity of the object is 0.

Page 6



Ichapter 4 — More about Lorentz Transformation @

[Solutions]

(a) What is the average velocity of the object from t =0 to 4s?
[Sol] From t = 0 to 4s, the total displacement of the object is 0. Hence, the average velocity
of the object is also 0.

(b) Show, by first principle, that the instantaneous velocity v(t) of the object at any time t is :
v(t) = -2t +4
[Sol] By First Principle, we have

fle+at) - ()

v(t) = lim
( ) At—0 At
o [—(t + AD)? + 4(t + AD)] — (—t% + 4t)
= A0 At
o [—t2 — 2tAt + At? + 4t + 4At] + t2 — 4t
= Ao At
. —2tAt + At? + 4At
= lim
At—0 At

= lim (=2t + At + 4)
At—0

=—-2t+0+4
=-2t+4

(c) Find the time when the instantaneous velocity of the object is 0.

[Sol] The instantaneous velocity of the object at any time t is given by :

v(t) = -2t + 4
So we put v(t) = 0 and hence we solve the equation :
0=-2t+4

togett=2
ﬂ% Challenge 4.1
1. Evaluate the following limits :

. h+x-x . (h+x)3-x3 . sin(h+x)—sin(x)
@ iy o)y @ im0

2. Consider a moving object with its displacement s(t) described by the function :
s(t) = t3 — t + sin(¢)
where t is the time of travel.

Page 7



IChapter 4 — More about Lorentz Transformation @

(a) Using the results of Question 1, or otherwise, find the function v(t) which describes the
instantaneous velocity of the object at any time t.
(b) What is the velocity of the object at timet =07

Spare some time and think a bit more...

® |n Question 2, if you differentiate s(t) with respect to time t by 2 times, what would you get?

® Sketch (422) the graphs of y =sin (x), y=x3andy =—x.

4.2 - Lorentz Transformation of Velocity

In this section, we will derive (#%&) the equations of Lorentz Transformation of Velocity.

Recall in Chapter 3, that the Lorentz Transformation (Z&fii2%%8#4) of Lengths and Time are given
by the equations :

X" = y(x — ut) x =y(x' + ut)

!/

- ux . ux
t—Y(t—g) t=vy(t'+—3)

Suppose there is an object moving at velocity v in a rest frame S. What would be its velocity v’ in a
moving inertial reference frame S’?

The solution is rather simple. In the previous section (Section 4.1), we say that the velocity of an
object is defined by :

f+A)—f(t) _d
B T

vV =

In the relativistic view, the velocity V' in the moving frame S’ can be defined as :

, _ ADisplacement in S'frame  dx'
V= ATime in S'frame —dt’

Now, from the formerly derived Lorentz Transformation of Lengths and Time equations, we have :

’ , ux
x' =y(x —ut) tZY(t_C_z
’ , ux
dx’ = d[y(x — ut)] dt’ =d [Y (t - ?)]
dx" = y(dx — udt) r_ udx
dt' = y(dt - —
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So at the end we get :

dx
, _dx’ _y(dx—udt) dx—udt E —u v—u
S dt’ udx udx dx _uv

The above equation is called the Lorentz Transformation of Velocity.

Watch Out...

Be careful when you read the Lorentz Transformation of Velocity.

(i) The “v” is the velocity of the object in the rest inertial reference frame S.

(ii)  The “u” is the velocity of the moving inertial frame S’ relative to the rest inertial reference
frame S.

(iii)  The “v"is the velocity of the object in the moving inertial frame S'.

<§?>Example 4.2

A point object is moving at a speed of 0.5 ¢ (c is the speed of light) in a rest inertial reference

frame S. Another frame S’ is moving at a speed of 0.8 c relative to the S frame.

(a) What is the velocity V' of the object in the S’ frame? Use Lorentz Transformation in this
guestion.
(b) What will be the velocity v’ of the object if we use Galilean Transformation?

[Solutions]

(a) What is the velocity V' of the object in the S’ frame? Use Lorentz Transformation in this
question.
[Sol] Using Lorentz Transformation, we have

, _v—u 0.5¢ - 0.8c _ —03c 0.5
Ve W T T (0500080 06
cz 1- 2
c

(b) What will be the velocity v’ of the object if we use Galilean Transformation?
[Sol] Using Galilean Transformation, we have v’ = 0.5¢ — 0.8c = —0.3c
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TCC% Challenge 4.2

2 rockets A and B are travelling in space. According to an observer on the Earth, the velocity of A
and B are ua=0.3 cand ug =—0.7 c respectively. Find the velocity of rocket B with respect to

rocket A.
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Key Poinits

Differentiation at a first glance

Instantaneous velocity is actually the first derivative of displacement defined by :

B ds

T dt

* Differentiation is a kind of limit function in which we try to find the “slope” of a pointin a

\%

graph.
e Because of Einstein’s postulate that the speed of light is invariant in all inertial reference
frames, we have to use Lorentz Transformation instead of Galilean Transformation to find

velocity of objects in different reference frames.

Lorentz Transformation of Velocity

* The velocity V' of an object in a moving reference frame is defined by :

, V—u
vV = A
2
Key Terms
Average velocity SEHEE P.2 Define E©FH% P.4
Derive & P.8 Differentiation &%y P.3
Displacement firf% P.2 Differentiation by First Principle P.5
TERA DR

Displacement-Time Graph P.2 Function pHEL P.4
(gEZisar]i=
Instantaneously at rest [EfEiEF1E P.2 Instantaneous velocity WFftiZEE P.2
Instant &[] P.3 Limit function Fix{E REL P.4
Lorentz Transformation ZEfmzZ%8Ha P.8 Magnify 7K P.4
Paradox %34 P.3 Philosopher #7E52 P.3
Propose #gH P.3 Sketch === P.8
Slope #}# P.4 Sufficiently &%t P.4
Trajectory Hfi P.6 Zeno of Elea Z:h P.3
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Check Your Concepts

1. Why do we need differentiation? How is it related to the speed of a moving object in a static
photo? [Section 4.1]

2. Canyou find the first derivatives of sin (x), cos (x) and tan (x) from differentiation by first
principle? [Section 4.1]

3. What are the TWO equations of Lorentz Transformation of velocity? [Section 4.2]

Historical Profile

Hendrik Lorentz was a Dutch physicist who shared the 1902 Nobel Prize in Physics with Pieter
Zeeman for the discovery and theoretical explanation of the Zeeman effect. He also derived the
transformation equations which formed the basis of the special relativity theory of Albert

Einstein.
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The following shows a speedometer (Z£
#%1) of a car. What is the

instantaneous velocity of the car?

\ \ | I I l , Avantéix 2005 3
A N g0 100 20 7/ y
\\6070 kmmh 140 2/
~ 50 160 //
S 80 -
- 200 ==
2 30 -
= 220 —
- 10 240:
o 260~
7 N\
A. 44 m/s
B. 47 m/s
C. 61 m/s
D.

to deduce the answer.

A student shoots an arrow using his
bow while another student takes
several pictures of the arrow before it
falls to the ground. Which of the

following is/are correct?

(1) The velocity of the arrow is zero at
every instant throughout its flight.
(2) If we know the function describing
the trajectory of the arrow, we can
find its instantaneous velocity.
(3) The average velocity of the arrow
throughout its flight is given by :
Total Displacement
V= Total Time of Flight

Not enough information is given 4

IChapter 4 — More about Lorentz Transformation @

A. (2) only
B. (3) only
C. (1) and (2) only
D. (2) and (3) only

Which of the following shows the
correct forms of finding the derivative of

the function f(x) = x3 + sin (x) by first

principle?
A. ~ [00)3 +sin(x)] — [(x + h)3 + sin(x + h)]
lim
h—0 h
B. . (x+h)®+sin(x + h)
lim
h—0 h
C. [+ h)® +sin(x + k)] — [x3 +sin(x)]
lim
h—0 h
D. ~ x3 + sin(x)
lim———=
h—0 h

Find the first derivative of

3 4
f(x) = —x2 + 2x — tan(gx)

A. 3 %+2 4 4
2x X 3sec (3x)
B 3 %+2 4 4
2x 3sec (3x)
1 4
xZ+2— sec2(§x)
D. 3 1

242 22
2x sec (3x)
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1. Derive the inverse Lorentz Transformation of velocity using similar steps in Section 4.2, i.e.
show that

v +u

vV = 7
uv

2
c
where V' is the speed of the object in the moving reference frame, and u is the speed of

1+

the moving reference frame.

2. Anobserver Ais at rest. Another observer B is moving relative to A at a speed of 0.5 c.
Now, B throws a ball forward at a speed of 0.5 c relative to himself. Find the speed of the

ball relative to A using Lorentz transformation equations.

[Question 1] (Difficulty : * )
Let’s consider a rather interesting question. Suppose we have 2 photons (light particle) travelling
towards each other. Each of them has a speed of c.

() —)

Photon A Photon B

(a) Using Galilean Transformation, what would be the velocity of photon B as seen by photon A?

(b) Show that the velocity of photon B as seen by photon A would be equal to c if we use Lorentz
Transformation.

(c) Which postulate of Einstein’s theory of special relativity will Galilean Transformation violate, as
shown by the calculations above?

[Question 2] (Difficulty : x = )

There is a kind of particle named Muon with a mean lifetime of 2 x 10 s (as measured from the
frame of reference of muon). If we neglect the effect of time dilation, even if it moves at the
speed of light (i.e. 3 x 108 m/s), it can at most travel a distance of 600 m.

However, research shows that muons produced at a height of 10 km = 10* m above the ground

can reach the ground at the end. This suggest that muons must be travelling at a very high speed
which leads to the time dilation effect in Special Relativity.
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(a)  Inthis question we consider the muon’s motion from the point of view of an inertial rest

observer on the Earth.

(i)

If the speed of the muon is u m/s, what would be the lifetime t of muon as

measured from the observer on Earth? Express your answer in terms of u.

What would be the maximum distance travelled by the muon, as measured by the
observer on Earth, according your answer in (i)?

Using (ii), set up an equation to estimate the minimum speed of the muon if it is to
be observed to travel at distance of 10 km before it disappears.

(b)  In question (a) we describe the motion of muon from the point of view of an inertial rest

observer on Earth. Now, let’s consider the motion from the point of view of the muon

(thatis, an inertial reference frame which moves together with the muon). From that

point of view, the muon particle is at rest while the Earth is moving towards it.

In this case, the muon’s lifetime is 2 x 10 s in its frame, and there is no time dilation

effect in its frame, so how can we explain why it can still reach the ground from a starting

position of 10 km above the ground?

[Question 3] (Difficulty : x * * )
Let us consider a particle moving in the polar coordinate system.

— . -91 -

The trajectory of the particle is given by r = 3, which is a circle of radius 3, centred at the origin.

In Cartesian coordinates, we can express the position of the particle by:

{x=3cos@
y =3sin6

where t is the time of travel.
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(a) Show that the distance of any points on the trajectory described by the equations above from

the origin is 3. This is the radius of the circular trajectory.

(b) Find the velocity of the particle along the (i) x-direction, and (ii) y-direction, by differentiation

using First Principle.
(c) When does the particle has 0 velocity along the (i) x-direction, and (ii) y-direction?

(d) Sketch 2 curves to show the velocity of the particle along the x and y direction with respect to

time t.

[Question 4] (Difficulty : x x * )
Note : This question requires basic knowledge about Matrix.

The usual Lorentz Transformation equations can be written in Matrix form. (You can learn more
about matrix in the extension chapter Matrix) as :

=7 ~2)O

—yu 14
(a) By simplifying the right hand side of the above matrix equation, show that we can obtain the

usual Lorentz transformation equations :

X' =y(x—ut) and t' = y(t— %)
(b) Evaluate the determinant of the matrix :
yu
—yu 14

To evaluate the determinant of a 2x2 matrix like :

Need a helping hand?

(c »)
We first write :

& ol

C D

And the evaluation is just : AB —CD.
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(c) Using your answer in (b), and the above matrix equation, find the inverse Lorentz

transformation equation in matrix form. Verify your answer by simplifying the right hand side of

your solution.

Need a helping hand?
@ For a matrix M defined by

u-t 9

If we can find an inverse M1, then we have :

MMt =] = (é )

@ For a 2x2 matrix M defined by

_ (A B
M= (C D)
If the determinant of M =K # 0, then the inverse M is defined by :

1 _
M= E(—DC AB)

(d) Show that when ¢ — oo (i.e. another way to say that u is much smaller than c), the above
Lorentz Transformation matrix equations reduce to the usual Galilean Transformation matrix
equations :
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[Question 5] (Difficulty : x x x x)
In the manga series “Assassination Classroom” (EF#%#(=), a yellow monstrous-like teacher “Koro-

sensei” (#=£EM) can move at a speed of 20 Mach (i.e. 20 times the speed of sound). One day,
Koro-sensei wants to go to Hawaii to watch a newly-released film “Sonic Ninja”. He flies to there
at a speed of 20 Mach. One of his student, Shiota Nagisa (jEiH;%) observes his flight on the
ground. During his flight, Koro-sensei sees another monstrous-like man “The reaper” (9EH) flying

pass him. From Koro-sensei’s point of view, the reaper is travelling at a speed of 20 Mach.

The reaper

20 Mach :
20 Mach

Shiota Nagisa

Koro-sensei

(@) (i) Given that the speed of sound is about 340 m/s. Express 20 Mach in unit of m/s.

(ii) From your answer in (i), 20 Mach is indeed much smaller than the speed of light,
and thus we can use Galilean Transformation in our calculation. Using Galilean
Transformation, find the speed of “the reaper” from the point of view of Shiota

Nagisa.
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(b)  Now, we assume that after receiving certain kinds of treatment, the maximum speed of
both Koro-sensei and “the reaper” increase dramatically. Now, it is known that
Koro-sensei is travelling at a speed of 0.2 ¢ (c is the speed of light). From his point of view,

“the reaper” is travelling at a speed of 0.2 c.
&

The reaper

0.2c

cyg‘ ”‘}Koro-sensei
0.2c

Shiota Nagisa

Using Lorentz Transformation, find the speed of “the reaper” as observed by Shiota
Nagisa.

(c)  Indeed, the scientist who invented Koro-sensei has made more koro-sensei(s). Let’s

denote the 1°t koro-sensei as K;. K1 is moving at a speed of 0.9 c relative to Shiota Nagisa.
From Ki's point of view, another koro-sensei (K;) moves at a speed of 0.9 ¢ relative to him.

0.9c

k %‘\ 0.9¢
p

Shiota Nagisa
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(i) Using Lorentz Transformation, find the speed of “K,” as observed by Shiota Nagisa

and express your answer in fraction.

(i)  Now, Kz saw another Koro-sensei (K3) moving at a speed of 0.9 c relative to him.

0.9c

%]

= 2L\

f ‘ ~\
@‘W) Your answer in (i)

Pl

) Shiota Nagisa

Using Lorentz Transformation, find the speed of “K3” as observed by Shiota Nagisa
and express your answer in fraction.

(iii)  Repeat (ii) if there is another koro-sensei (K4) moving at a speed 0.9 c relative to K3

and express your answer in fraction.

(iv)  Your answer in (i), (ii), (iii) are expressed by fractions : %c , %c and %c

respectively (c is the speed of light).
(1) Find a relationship between the numerator and the denominator of these

fractions.
(2) Find the value of C+ A and E =+ C, round down to the nearest integer.

(v)  Ifthere are in fact N koro-sensei(s) (i.e. K1, K2, Ks ... Ky), find an approximation of the
speed of Ky relative to Shiota Nagisa by using your answer in (iv).
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[Question 6] (Difficulty : x x x x x)
Note : This question requires basic knowledge about Matrix.

For simplification, neglect y-coordinate and z-coordinate in the following calculations.

Consider 2 inertial reference frames S and S’ with coordinates (x , t) and (x/, t’) respectively,
where x and t are spatial and time coordinates respectively. Initially, the origins of Sand $’ are at

the same point.

S’ is moving relative to S along the x-axis at a speed of v. Under Lorentz Transformation, the

coordinates transformation can be obtained by the equations :

{ x' = f(w)(x —vt)
t' = g)(t —mv)x)

where f(v), g(v) and m(v) are functions of v to be determined later.

(@)  Alightsignal is emitted at the origin along the positive x-direction in the S-frame.
(i) Write down an equation connecting x and t which describes the subsequent

motion of the light signal.

Need a helping hand?
@D “x”is the distance travelled by the light signal.

@ “t”is the time of travelling of the light signal.
3@ What is the speed of the light signal?

(i)  Write down an equation connecting x” and t’ which describes the subsequent

motion of the light signal as seen in the S’ frame.

Need a helping hand?
@ Something about the light signal is unchanged (“invariant”) under one of the

postulates of Special Relativity. What is it?

(iii)  Using your results from (i) and (ii) and the given Lorentz Transformation equation to
obtain an equation connecting f(v), g(v) and m(v). Name this equation as (1) (Don’t

worry, the final equation is kind of “ugly” =))
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Repeat (a) if another light signal is emitted at the origin along the negative x-direction in
the S-frame. Name the final equation you obtained as (2)

Need a helping hand?
In this case, the light is moving towards the left, so the distance travelled would be

negative.

(i) By considering performing some manipulations with equations (1) and (2), find m(v)
in terms of vand ¢ (c is the speed of light).

Need a helping hand?

We want to eliminate f(v) and g(v) to get an equation involving only m(v), v and c.
Observe the similarities between equation (1) and (2). Which manipulation (i.e.
addition, subtraction, multiplication and division) can help you eliminate f(v) and

g(v)?

(i) Hence, or otherwise, show that f(v) = g(v).

Need a helping hand?
@ Forthe “hence” approach, you have to substitute your answer in (i) into either

equation (1) or (2) to show the required result.

@ Forthe “or otherwise” approach, you have to think of one manipulation upon

equation (1) and (2) to eliminate m(v).

Using matrix representation, the above Lorentz Transformation equations can be written

in the form :

1= T

[Note : We have proved that f(v) = g(v) in the previous question. Here we use f(v)]

When we consider the inverse Lorentz Transformation, the S frame will be moving at a

speed of — v as seen from the rest S’ frame.

Because of the symmetry along the vertical line passing through the origin, we have m(—
v ) =—m(v), together with f(—v ) =f(v) and g(—v ) =g(v).

Hence, the inverse Lorentz Transformation can be represented by :
X1 _ 1 v]x’
[t] =f) [m(v) 1] [t’]
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Using the above two matrix equations, find f(v).

Need a helping hand?

@ Substitute the 2" matrix equation into the right hand side of the 15 matrix equation,

then simplify the expression to obtain f(v).

@ Some useful and simple manipulations of matrix :

A B E F1_ A Bl[E F
@ e D-f(X)[G H _f(x)[c pllc H
(b) A BJ[E F]_[AE+BG AF+BH

IC DILG H CE+ DG CF+ DH
(C)'A B'[l Oz[l OHA Bl_[A B

IC DIl0 1 0 1lLC D C D

A By _[Af(x) Bf(x)

@& p _[Cf(x) Df (x)

A Bl _[E F1. R B
(e) C D]_ G U ifandonlyifA=E,B=F, C=Gand D =H.

[Question 7] (Difficulty : x x x % %)
In a rest inertial reference frame S, the coordinate system can be represented by (t, x), where t is
the time coordinate and x is the spatial coordinate.

Another inertial reference frame S’ is moving at a speed v along the positive x-direction. The
coordinate system can be represented by (t’, x’).

The usual Lorentz Transformation equations from the S frame to the S’ frame are :

{ct’ = y(ct — Bx)
x" =y(x— Bct)

where

1
i-p

(a)  Using the above equations, find the inverse Lorentz transformation equations. (i.e. find

_V d —
B—C and y =

the equation for ct and x)

(b)  Thereis arod parallel to the x” axis which is at rest in the S’ frame. The coordinates of the

left end and right end of the rod in the §’ frame are (t’, x.") and (t", xg") respectively.
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(i) Denote the length of the rod as Ly. Express Lo in terms of x.” and xg’.

(i) Find the length L of the rod as measured in the S frame in terms ofy and Lo

Need a helping hand?

@ Do you remember the length contraction equation?
LO == YL

@ Who measures the proper length now? The observer in the S frame or the §’

frame?

The following shows how Paul attempts to use inverse Lorentz Transformation to find the
length L of the rod in the S frame :

Paul’s attempt :

Using the inverse Lorentz transformation equations, we can find the x-coordinates of the
2 ends of rod in the S frame. The difference between the x-coordinates will be the
required length L.

Steps :
@ Using the equations, we have

{XL = y(x, + Bct’)
xg = ¥ (xg + Bct’)

@ Therefore, we have the required length L as :

L=xp—x,=y(xg—x1) =vyLy > Ly

® From the calculation, we can see that “a moving rod” expands instead of contract

from a rest inertial observer point of view.

Obviously, we know that a moving rod seems to contract from the point of view of a rest
inertial observer. What is wrong, then, in Paul’s attempt?
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(d)  Now, we assumed that we put an ideal synchronized clock which co-move with the S’

frame. The clock has a spatial coordinate of X' ¢iock in the S’ frame.

(i) Using the inverse Lorentz Transformation equations, verify the statement :
A moving clock runs slower.

(ii)  Repeat (i) using the Lorentz Transformation equations.

~The End~™
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Chapter Starters...

It will be very boring if we can only use mathematics to deal with problems in Special Relativity.
Can we draw some kinds of pictures to have some fun?

The question is — Why CAN’T we? Of course we can draw pictures. We will introduce, in this
chapter, the spacetime diagram to the readers. You can illustrate relativistic ideas and situations

by making use of the spacetime diagram.

Let’s first review how to make use of a distance-time graph in the following question.

Speed =

I 1 AU/ day

Yiu Yung

4.5x10% m Speed =
— (0.5 AU / day
Alvin

Origin
(x=0)

Two friends, Alvin and Yiu Yung, are racing in space travelling in their spaceships. At time t =0,
Alvin is at a distance of 4.5 x 10*! m right from the origin (x = 0) and Yung is at the origin.

(a) One astronomical unit (KX 3ZE A7) [AU] is defined as the average distance between the Sun
and the Earth. Given that 1 AU = 1.5 x 10* m. Find how many AU is Alvin away from the
origin.

(b) Suppose Yiu Yung travels at a speed of 1 AU / day. Write down an equation relating x and t for
Yiu Yung. (Hint : How far will Yiu Yung travel t days later? What does “x” represent?)

(c) Suppose Alvin travels at a speed of 0.5 AU / day. Write down an equation relating x and t for
Alvin. (Hint : How far will Alvin travel t days later? Where is Alvin at t = 07?)

(d) Sketch the 2 equations of straight lines in (b) and (c) in the graph next page.

(e) Using the graph, or otherwise, find when Yiu Yung will catch up with Alvin.

(f) After Yiu Yung catches up with Alvin, he starts to return to his original position (i.e. the origin)

at a speed of 0.5 AU / day. Find when he will return to his starting position graphically.
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@

Distance (AU)

Graph Paper

A

19

18

17

16

15

14

13

12

11

10

8

10

12

14 16 18
Time (Days)

20

22 24

26 28
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5.1 — Introduction to Spacetime Diagram

In this section, we will introduce spacetime diagram to the readers, explaining its major

features, including the axes, world line etc.

I’'m tired of dealing with Well actually yes. It is

all the mathematics. Can’t| |common to use spacetime
we just have some figures | |diagrams to illustrate the
and diagrams to look at? ) |situation in relativity.

=

You may have already encountered some graphs like “Distance — Time graph” (FEEERF =),

“Displacement — Time Graph” or so. These graphs describe the (relative) (f5%fH#y) position of a

certain person or object.

In Special Relativity we also have a kind of graph which is similar to the above mentioned graphs,
which is called the Spacetime diagram (F52=[&]).

A usual spacetime diagram takes the usual format as that of Cartesian coordinates (E 4412 £,
that is, it is formed by 2 perpendicular axes, one vertical (F£ E 1Y) and one horizontal (7K FZHY).

The horizontal axis refers to the space axis (Z=f&]Hif)*. It is the spatial position (25t _EAIYALE) of
events (E5/4).

(*Note : In general, the position of an event is 3-dimensional (=%&/Y) [i.e. It should have x, y and z
coordinates in space]. In most of the discussions and problems in this set of notes, we will focus
on only 1-dimensional cases [i.e. You may regard the space axis as the usual x-axis].)

On the other hand, the vertical axis refers to the time axis (). We intentionally multiply the

time axis t by the speed of light ¢ to simplify things. [See “Want to know More?...” if you want to
know the reason behind this act.]
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= I
1t Yiu Yung

Let’s examine (f15¢) the above spacetime diagram.

X

In the above diagram, Alvin is first at rest at x = 0. Then, he moves to the right (positive-x direction)
and comes to rest. Finally, he walks back to x =0 at the end.

On the other hand, Yiu Yung moves towards x = 0 at an uniform speed.

There are some features ($5%£k5) on a spacetime diagram. We shall examine them one by one.

ct*

Speed =0.5¢

, Worldllne

>
X

Suppose Alvin is moving to the right at a uniform speed of 0.5 c. The equation which connects

Alvin’s x-coordinate and t-coordinate will be :

Y~

x = 0.5

ct

2 X

<
Il
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We can plot a straight line (red line) on the spacetime diagram to show the path or trajectory
(#LB77) of Alvin. We say that the red line is the world line (tt534%) of Alvin.

What about the world line of light?

Light is travelling at a speed of ¢, so the equation for its world line will be :

)’\
X = |ct
=5

So it will be a straight line (yellow line) making an angle 45° with the x-axis.

cta

World line of light

Now, look at the following spacetime diagram. What does the green line represent? What is the
motion of Yiu Yung?

ct 4 World line of Alvin

< A

/ |

I

/ | \
/ : World line of light
/
/ l
=K 2
W
i >

X

Answer : The green line represents the world line of Yiu Yung. He is at rest somewhere right to the

origin.
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Want to know More?...

“t” versus “ct”...Wait! Aren’t they of different dimensions?

(“t” VS “ct”... Ef 11 &1/ E 5555 ?)

Good question. The author has also been pondering (5£Z) on this question. Right, we meant to
construct a graph similar to that of a distance — time graph, but now ct would be having a length
dimension [m] instead of a time dimension. So what’s the point of doing this?

The point is, what is the Sl unit of time and length? [s] and [m].
Still remember the world line of light :
X =ct

If we plot it on a t-x diagram, how would it look like?

t 4

World line of light

It would probably look like the yellow line in the above diagram.

o
>

X

You might ask, what’s the matter of this? Here’s the problem : When would relativistic effect

become important?

Of course when objects travel at a speed close to the speed of light. Let’s draw the world lines of

a few of these objects on the above diagram to see what will happen.

t -
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The lines would be very close to the world line of light. Can you imagine how we are going to
further do drawings on the diagram?

To help us solve the problem, we intentionally multiply the speed of light ¢ to the time (t) axis to
make it more convenient (5{#) in doing drawings.

cty

World line of light

v

Although the vertical axis ct now carries a length dimension, you should still somehow interpret
it as a time. You can convince yourself by saying that each unit length on the ct axis is “the time
required for light to travel 1 m”.

Another important result which rises from this construction is the calculation of spacetime
interval (H525[&fH) which you will learn more in Chapter 6.

In relativity we want some kinds of rule similar to that of Pythagoras theorem. Physicists soon
found an expression which can be invariant under coordinate transformation, which is the
spacetime interval:

AS? = —(ct)? + x% + y? + z2
This is similar to the Pythagoras theorem we used to, except 2 differences:
(1) An additional ¢ is multiplied to the time coordinate.

(2) The sign in front of the time-coordinate is negative instead of positive.

We will not explain this here in this Chapter. You can find out more in Chapter 6, in which we

will formally introduce this new concept.

However, you can notice the appearance of ct in the above expression suggests the vertical axis
in a spacetime diagram to be ct instead of t.
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Let us now examine another feature of the spacetime diagram.

ct 4

Ax v
-
/7

cAt /

)
by
e .

Again, the red line represents the world line of Alvin. What is the angle 0 between the world line

X

of Alvin and the ct-axis?

In fact, we can find the value of the angle 0 by the following equation :

. 9_Ax_1<dx)_u
an T cAt c\dt) ¢

where u is the speed of Alvin.

Up till now, we believe nothing can be faster than the speed of light c. So the upper limit of u
would be c. Thus, we have :

u c
tanf =—-<-=1
c cC

and hence we have the angle 0 of any object on the spacetime diagram would be smaller than
45°,
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Let’s use a case that we are familiar with (24&fY) to apply the spacetime diagram.

Recall in Chapter 2, we use the following “light in a moving car” case to derive the time-dilation

equation?

Background of the case :
Inside a moving car, there are 2 mirrors.

At time t =0, a light signal is sent from the bottom mirror to the upper mirror. After being

reflected from the upper mirror, it returns to the bottom mirror.

When the light signal is first sent, both Doraemon (on the car) and Yiu Yung (on the road at rest)

both start a timer to count the time of travel of the light signal.

l:

D

"
CRRRT

N}

ut’/2 o, ut’/2

o
L

TI7777777
s

L 4‘,'/2//////4

=
"3

Now, how should we draw the spacetime diagram for the events (Z={4-)?

TLL
F 3

Let us denote (%) :

Event A : The light signal is emitted (2£5¥) from the bottom mirror.
Event B : The light signal reaches (%) the upper mirror.

Event C : The light signal returns ([2]Zl]) the bottom mirror.
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We can hence draw 2 different space-time diagrams from the point of view of Doraemon and Yiu

Yung.
Spacetime diagram Spacetime diagram
as seen from Yiu Yung’'s Frame as seen from Doraemon’s Frame
A C
[
C l
| \/
/ I
/
B 7 N4
1 '/ I
4 I
7 !
/
k > X ' > X’
A A
Note : The has moved to the right as | Note : The is moving vertically up
seen from Yiu Yung's frame. and down as seen from Doraemon’s
frame.

Cg% Example 5.1

Consider the case in Example 2.1 :

Background of the case :
At the instant shown, a Doraemon is standing in the middle of a moving bus travelling to the
right at a speed u. Two of his friends, A and B, are standing at the 2 ends of the bus. Yiu Yung
is at rest outside the bus.
At the time t = 0, Doraemon sends 2 light signals to A and B simultaneously. In his point of

view, A and B will receive the light signals at the same time. But from Yiu Yung’s point of view,

A will receive the signal first.

(a) Sketch the spacetime diagram from the point of view of the middle Doraemon.
(b) Sketch the spacetime diagram from the point of view of Yiu Yung.
(c) What can be a possible conclusion to this case? How is it related to relativity?
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[Solutions]

(a) Sketch the spacetime diagram from the point of view of the middle Doraemon.
[Sol]

World line of ct' World line of
Left-Doraemon \ Right-Doraemon
EEENEEE NS EEEEEEEEEEE  EEEEENEEEEEEEEEEEEEENN] Happen
X P simultaneously
N\ /
\ 7/
N\ V4
\ /7
N\ 7/
\b > X'

(b) Sketch the spacetime diagram from the point of view of Yiu Yung.
[Sol]

World line of World line of
Left-Doraemon ct Right-Doraemon

!

llllllllllllllllllllllllllllllllllll 7lll|Happen next

/7

4 ,
lllll ;llllllllllll llllllllllll?llllll '"‘Happenfll’st

N\ /
\ /

(c) What can be a possible conclusion to this case? How is it related to relativity?
[Sol] From the point of view of Doraemon, Event A (light signal reaches A) and event B (light
signal reaches B) happen at the same time (Simultaneously), but from the point of view of

Yiu Yung, Event A happens before Event B.
Conclusion : Simultaneity is NOT an absolute concept in relativity.

(Or other acceptable answers)
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TCC{{ Challenge 5.1

Consider the following case :

ball) >
® - O

ST=

1t

Doraemon is riding on a bus moving to the right with an uniform speed u. Yiu Yung is at rest

outside the bus. At time t =0, Doraemon throws a ball upward.

(a) Draw the spacetime diagram from the point of view of Doraemon.

(b) Draw the spacetime diagram from the point of view of Yiu Yung.

(c) Assume that both Doraemon and Yiu Yung have a proper clock to measure the time interval
between the ball’s motion. State who will measure the proper time.

(d) This time, Doraemon throws a ball to the right with a speed v, as measured from his frame.
Find the speed of the ball as seen by Yiu Yung using Lorentz Transformation of velocity.

Spare some time and think a bit more...
® |s the ball itself a good inertial reference frame? Why?
® Consider the case in question (d). There is another Doraemon (Say B) at the right end of the

bus to catch the ball. Compare the time elapsed between event A (Left Doraemon throws
the ball) and event B (B catches the ball) from Doraemon’s and Yiu Yung’s point of view.

Which one is longer? Can you explain why?
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5.2 — Drawing on the Spacetime Diagram

In this section, we will illustrate (J&7<) how to draw and use the spacetime diagram.

We now want to plot both Sand S’ frame on the same graph. First, we have to find the ct” and X’
axes on the S frame.

Recall the Lorentz Transformation equations in Chapters 3 and 4 :

Equation 1 Equation 2

x' = ~(x — ut) r = y(z' + ut')

Equation 3 Equation 4
;o ux . ux!
t—’Y@_C_g) tZ’Y(t+C—2)

What we are trying to do is to merge (&) the 2
spacetime diagrams for S and S’ frame on the graph
paper. We try to put it in the form such that their origins
(O and O’) coincide (F:#E).

To make the 2 origins coincide, we require :
(a) X =0whenx=0 X'
(b)t' =0whent=0

For requirement (a), and together with equation 2, we have : |« = ¥[(0) + ut’] = y(ut')

Recall that the time dilation equation in Chapter 2 is given by : t =1

From the 2 equations, we have

r = y(ut') = 7[%(%)] — ut

as the equation for the ct’ axis.

[Note : x is now measuring the distance of the S’ frame with respect to its own origin.]
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The slope of the line is given by u. So we have the angle ¢ between the ct axis ct
and the ct’ axis given by :
x
tan(B) = —
(8) == x
1., _q,ut 1, U
B=tan (=) =tan (=) =tan ' (=) ¢
ct ct C “t
X
Similarly, for the x” axis,
- - - . ux’ ux’
For requirement (b), and together with equation 4, we have : t =~[(0) + 0_2] — 76_2
Recall that the length contraction equation in Chapter 2 xr = 7(13/
is given by :
From the 2 equations, we have
T
) (ux’) [U(g)}
=N )=7
c? c2
2
c°t = ux
as the equation for the x” axis.
The angle between the x” and x axis, «, is given by:
ct
tan(a) = —
X
i ct
_qct 1 e Y | ;
a=tan (=) =tan"'(-%) = tan" (=) X
X X C

which is exactly the same as ¢. We hence define the angle between the Sand S’ frame

neighbouring axes as tan™?! (%) =tan"! .
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The spacetime diagram below summarizes the above results.

cta ct' x=ct

As the axis have tilted, the grid lines (#%4%) will also be tilted :

ct ct' xX=1 x'=2 x'=3 x'=4
ct'=4
ct'=3
ct'=2
ct'=1
/x’
X
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Let’s consider 4 events A, B, Cand D in the following spacetime diagram.

CtT ct' X =1

The yellow lines are called the “lines of simultaneity” ([5]204#) of the S’ frame. Events lying on this
line happen simultaneously in the frame S’. Similarly, the red line is the line of simultaneity of
frame S.

We can easily see that while events A and B happen simultaneously in frame S, this is NOT the
case in the S frame; Indeed, event A happens before B in the S frame.

On the other hand, while events C and D happen simultaneously in frame S, this is NOT the case in
the S’ frame. In fact, event C happens before D in the S’ frame.

This once again prove that

“Simultaneity” is NOT an absolute concept in relativity.

At the same time, the blue line is a world line (1 574%) at x’ = 1 in the S’ frame. This tells us that
event A and D happen at the same location in the S’ frame, but this is NOT the case in the S frame!
Actually, event D happens at the right of event A in the S frame.

We will see how we can make use of the spacetime diagram to prove length contraction and time
dilation in Example 5.2 and Challenge 5.2.
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C5’£>Example 5.2

Let’s assume in the S-frame (rest frame), there is a rod of proper length L, at rest. Denote the
left end and right end’s position as Q and P respectively in the S frame. There is another moving
S’ frame with a speed u relative to the frame S. The following spacetime diagram illustrate the
situation.

ct 4

% é .

Prove the length contraction equation using the given materials and information.

[Solutions]
Let’s denote the coordinates of Q, Q’, P, P’ as Q(x4,0),Q'(x3,0), P(x,,0) and P’'(x;,0).

Note that Ax’' = y(Ax — uAt). We have:

X; — X7 = Y[(Xz —x1) —u(0)] = y(xz — x1)

L():YL
L
L=—
Y

which is the length contraction equation.
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Tfﬁ Challenge 5.2

Let’s assume in the S-frame (rest frame), at the position x and t = 0, there is a clock at rest.
There is another moving S’ frame with a speed u relative to the frame S. When the time of the

clock reads tq, the clock intersects with the x” axis of the S’ frame. The following spacetime

diagram illustrate the situation.
World Line of Clock

ct T ct’

(tQ ’ X)

& > X
P (0,x)

Derive the time dilation formula using the given materials and information.
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Key Points

Spacetime Diagram

* There are usually 2 axes in the spacetime diagram :
- Horizontal axis : Spatial position (x)
- Vertical axis : Time axis (ct)

* Aworld line is the trajectory of any person or object on a spacetime diagram.

* Theangle B between the world line of any object and the vertical time axis can be related

by the equation :

tand AxX u
ang = — = —
cAt ¢

where u is the speed of the object. Note that 0 is always smaller than 90°.

Drawing on the Spacetime Diagram

* The equation of the ct’ axis is given by :

* The equation of the x” axis is given by :

ux = c%t

* The angle between the S and S’ neighbouring axes is given by :
u

tan~!p = tan™! (—)

c

* Aline of simultaneity is a line on the spacetime diagram on which all the events happen at

the same time in that reference frame.
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Key Terms

Astronomical unit  KIZEEAT P.1 Spacetime diagram  HFZ2=[E] P.3
Cartesian Coordinates EAEFEZ,  P.3 Space axis  ZZ [ P.3
Spatial position  ZZf FAYAIE P.3 Event ZE{4 P.3
Time axis A P.3 World line {5745 P.5
Dimension &4 P.6 Spacetime interval HFZE[&[H P.7
Coincide F:&f P.13 Grid lines  #&43 P.15
Line of simultaneity [E*543 P.16

Check Your Concepts

1. Canyou clearly define what a world line is? [Section 5.1]

2. What is the angle between the world lines of an at rest observer and a moving observer?
[Section 5.1]

3. Whatis a “line of simultaneity”? [Section 5.2]

Historical Profile

Bernhard Riemann was a German mathematician who made contributions to analysis, number
theory, and differential geometry. In the field of real analysis, he is mostly known for the first
rigorous formulation of the integral, the Riemann integral, and his work on Fourier series.
Through his pioneering contributions to differential geometry, Bernhard Riemann laid the
foundations of the mathematics of general relativity.
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1. Consider the spacetime diagram for an A. 0.5c
inertial reference frame. How will the B. \/§
world line look like if it is at rest at some ?C
position x = a from your point of view? The C 2¢
line will be.. D. Not enough information
A. Oblique
B Horizontal Question 4 — 5 refer to the following.
C Vertical Event A and B lie on the same horizontal line in
D Not enough information is given 2 spacetime diagram of an at rest observer.

to deduce the answer.
4. What is the name given to the

2. Which of the following best shows the horizontal line mentioned?

equation of the world line for light in an A. World line.

inertial reference frame? B Time line.

A. X =t C. Line of simultaneity.

B ux = c’t D Yellow line.

C. X =ut

D X = ct 5.  Assumes that the observers live ina 1D

world (they can only move left or right).

3. Referto the following spacetime If another observer C sees event A

diagram. Alvin is at rest (S frame) while happens before event B, and given that

Yiu Yung (red line) is moving at a speed event A’s position is on the left of event

u away from Alvin. B in the rest observer’s point of view.

World line of Yiu Yung To which direction is C moving

ct 4 ﬁ
g/ towards?
A.

/ To the left of the rest observer.
/ To the right of the rest observer.

30°7 B.
/ \ C.  Cisalso at rest.
A , World line of light D

C first moves to the left, then

U . X back to the right again.

>

Determine the value of Yiu Yung’s

speed u using the information given.
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1. By making use of a spacetime diagram, show that observers moving relative to each other
can have different opinions on the simultaneity of two events A and B.

2. Show explicitly that the world line in a spacetime diagram is described by the equation
X = ct. You should list out all the mathematical steps required to achieve the result.

[Question 1] (Difficulty : )
We have been dealing with 1D problems only so far in this chapter (i.e. We only consider the x-

direction as the only spatial coordinates). Let us consider one more spatial coordinates such that

the spacetime coordinates of each eventis (t, x, y).

Let’s consider a man standing at (x,y) = (0,0). At time t = 0, he throws a ball upward towards

the positive y-direction. Assume gravity acts along the negative y-direction.

(a) Sketch, on the x-y plane below, the trajectory of the ball when the ball is thrown.

y

» X

(b) Sketch, on the y-t plane below, the trajectory of the ball when the ball is thrown.

t
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(c) Sketch, on the x-y-t system below, the trajectory of the ball when the ball is thrown.

1

>y

(d) Sketch, on the y-t plane below, the trajectory of the ball if there is NO GRAVITY.
t

[Question 2] (Difficulty : x x )
Consider the case below.

Background of the case :

Inside @ moving car, there are 2 mirrors.

At time t =0, a light signal is sent from the bottom mirror to the upper mirror. After being
reflected from the upper mirror, it returns to the bottom mirror.

When the light signal is first sent, both Doraemon (on the car) and Yiu Yung (on the road at rest)
both start a timer to count the time of travel of the light signal.
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(a) Sketch a spacetime diagram showing both the S-frame (Yiu-Yung’'s frame) and the S’-frame
(Doraemon’s frame).
Denote :
e Event A = Light emitted from the base.
e Event B = Light returned to the base.

Let the coordinates of A" = A’(0,0) and B’ = B’(0,t}) inthe S’ frame.

(b) Prove the time dilation equation using the information above.

(c) Prove the length contraction equation using the information above.

(d) If, after event B, the car suddenly move backward with speed u and a light pulse is emitted
from the base again immediately. Ignore the acceleration involved in this process. Denote

Event C = 2" Light pulse emitted from the base, and Event D = 2" light pulse returned to the

base. Sketch the new situation on the same spacetime diagram in (a).

[Question 3] (Difficulty : x x x )

. 173 . ” 08 Sk Sh. - h
In a Japanese cartoon series “Crayon Shin-chan” (g5 /[\37), nean

the main character Shin-chan (/\§) has a pet dog named °

Shiro (/[N ). One day, Shin-chan plays a game with Shiro. He

b

stands at rest at a position together with Shiro. At time t =0,
he sends a light signal to the right and Shiro immediately

g

follows the signal at a speed of u. (You may assume that uis a

fraction of ¢, the speed of light.) Shiro

(a) Sketch a spacetime diagram showing the world lines of Shin-  Shin-chan

Chan, Shiro and the light signal. S8

o | | Iy

(b) There is a mirror at a distance x = a from Shin-Chan. Use »
dotted line to represent the world line of the mirror in the éﬁ?ﬁb s

same spacetime diagram in (a). Shiro

(c) The light is reflected and returns back to Shin-Chan after hitting the mirror. Label the point R

as the point when the light is reflected, and T as the point when Shiro catches up with the

reflected light ray.

N 1
]

LLLLL L L LA,
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N
g |

In fact, there will be an image of Shin-Chan and Shiro behind the mirror during the whole process.

Shin-chan Shin-chan image

v

VIR L LISV E L

Shiro image

(d) Sketch the world line of Shiro image, Shin-Chan image and the light ray image on the same
spacetime diagram in (c). Denote T’ as the point when Shiro image catches up with the

reflected image light ray, and R’ as the point when the image light ray is reflected. Hence show
that R and R’ coincide.

(e) From Shiro’s point of view, what is the speed of Shiro’s image? (Hint : Use Lorentz’s
transformation.)

(f) From Shiro image’s point of view, what is the speed of Shiro? (Hint : Use Lorentz’s
transformation.)

(g) Using your spacetime diagram, show that
(1) From Shin-Chan’s point of view, T and T’ happen simultaneously.
(2) From Shiro’s point of view, T" happens before T.

(3) From Shiro image’s point of view, T happens before T'.

(h) What conclusion can you make from the above results? How is it related to relativity?
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[Question 4] (Difficulty : x * * %)
Consider the following spacetime diagram.
ct T

A and D represents 2 events happening in the rest frame.

(a) Does event A happen before D? Or does D happen before A?

(b) Does A and D happen at the same spatial position in the rest frame?

(c) Suggest a way for another observer K to move such that he will see that A and D happen at the
same place. Verify your answer by drawing the world line ct” and the spatial axis x’ of the
observer, as well as the world line of event A and D in his frame.

(d) Suggest a way for another observer L to move such that he will see that A and D happen at the
same time. Verify your answer by drawing the world line ct”” and the spatial axis x”” of the
observer, as well as the line of simultaneity for the events A and D in his frame.

(e) If we want to see event D happens before event A, how fast should we move? Use a
spacetime diagram to help you. (Note : Here you will see the consequences of moving faster
than the speed of light. Suppose event A marks your birth, and event D marks the 1% day you
go to school, then in this case you will go to school even before you were born...)

Page 26



1Chapter 5 — Usage of Spacetime Diagrams
[Question 5] (Difficulty : x x x x *) ®
In 2200, the Earth has developed spaceships which can fly at speed very close to the speed of
light. In a certain year, NASA sends 2 spaceships outward to look for aliens. Spaceship 1 flies
towards the positive x-direction at a speed of 0.2 ¢, while Spaceship 2 flies towards the negative x-
direction at a speed of 0.4 c. Assume that t = 0 when the spaceships departs, and assume that
NASA space station is at rest at x = 0.

(a) Sketch the world lines of the NASA space station, spaceship 1 and 2 on the same spacetime
diagram.

(b) At t = 2, NASA received a warning from an unknown alien, and it immediately issue a warning
signal to both spaceship 1 and 2. Sketch the world lines of the light warning signals.

(c) According to your diagram in (b), which spaceship will receive the warning signal first? Where
is the other spaceship relative to NASA space station when the 1° spaceship receives the
signal?

(d) When the spaceships receive the signal, they will return to the NASA space station at a speed
of 0.5 c. Sketch the world line of the spaceship which 1° receive the warning signal.

(e) When the 1% spaceship receives the signal, the other spaceship, unfortunately, relative to the
NASA space station, is simultaneously captured by the evil alien and it rides the spaceship
back to the NASA space station. What should be the speed of the captured spaceship such
that it can return to the NASA space station at the same time as the other spaceship does?

(f) The alien rides the spaceship at the speed in (e). However, unfortunately for the alien but
fortunately for the Earth, the spaceship exploded half-way along the path it returns to NASA
space station. Denote the event of the explosion as V. Sketch the world lines of the light
emitted at the explosion. Will the light signal reaches NASA space station first, or will the other

spaceship returns first?

(g) The astronaut together with the captured spaceship remains at rest at his position after the
explosion of the spaceship. After receiving the explosion light signal, NASA immediately sends
a rescue spaceship travelling at a speed of 0.8 ¢ to save the astronaut. By how much time after
the explosion will the astronaut be saved?
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[Question 6] (Difficulty : x x x * * %)

Misae and trap paradox

Back trapdoor Lo Front trapdoor

Misae

Shin-Chan
FL, XFFL. o o

In a Japanese cartoon series “Crayon Shin-chan” (#§%2/]\¥), the main character Shin-chan (/)\#r)
always describes his mother Misae (3£)4) as a “big fat old witch”. After learning special relativity

today at school, he thinks of a “great idea” to make fun of his mother.

Noticing that his mother’s horizontal proper length is Ly + 1, Shin-Chan designed a trap of length
Ly. He makes Misae angry such that she chases him at a speed of u (fraction of c) which is fast
enough, according to the length contraction formula, to contract Misae’s length lower that L,

such that she can fit into the trap.
Once Misae enters completely into the trap, Shin-Chan will close both the front and back trap
door simultaneously to trap Misae inside. From the point of view of Shin-Chan, this is completely

possible.

However, from the point of view of Misae, it is the “trap” which is moving, and the trap would

indeed undergo contraction and will be too small to trap her.

What is going on here? Who is right and who is wrong? Can you figure out what is the thing that

confuse you here?

Try to sketch a spacetime diagram to help you resolve this paradox. You may find part of the

completed spacetime diagram in the next page useful.
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Shin-chan’s Back Front

world line
door door

/ x

Misae Misae
back front

~The End~
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Chapter Starters...

Readers, | understand that you must be a bit angry because you cannot actually do ANY DIRECT
MEASUREMENTS on spacetime diagrams in the last chapter. In fact | can sense that some of you
are saying that | have DECEIVED (#tER) you. I'm sorry, but that what | meant to do to you...
BAZINGA (Credit to Sheldon Cooper from “The Big Bang Theory”). A good news to you is, in this
chapter, we will be able to formulate an ACTUALLY APPLICABLE spacetime graph such that we
can do real measurements on it. Are you happy to know that? | bet you DID. But before so, let us
give you a short review on COORDINATE GEOMETRY (J2fZ£& ).

In figure A, 2 points P(x4,y;) and Q(x,,y,) are shown on the x-y coordinate plane.

Ya y Y 2
Q' (z4,v5) X
7’ ’Q(J:Q:yQ) P’( , ,) // ’ Q($2ay2)
g T1,Y1
7 7
il ‘P T
Y
P(x1,11) p (z1,21)
» X h > X
0 0,0’
Figure A Figure B

(a) Express the distance between P and Q (i.e. PQ), in terms of X4,y1,x, and y,.
(b) In figure B, the x and y axes are rotated (fjg## 17) anti-clockwisely (754t #) by an angle 0
such that we get a new coordinate system with axes x’-y’. The coordinates for points P and Q

are P'(x1,y1) and Q'(x5,y3) respectively in the new system, and P and Q lie on the x’-axis.

(i)  Express x; and yj intermsof x; andy;. x’
(Hints : P'(z1,91)
(1) For x1, consider the triangle on the right : n
(2) For yz, note that P’ lies on the x’ axis.) 6
0,0’ T

(i) Similarly, express x5 and y, intermsof x, andys,.

This Question continues next page.
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(iii)  Express the distance between P’ and Q' (i.e. P’Q’) in terms of xj and x5. Using your
answer in (ii), further express your answer in terms of x4,y, X, and y,.
(Notes : You might be curious that P’Q” is NOT OBVIOUSLY EQUAL to your answer in (a).
But you do know that it MUST BE equal. What’s wrong?)

(c) Express tan@ in terms of
(i) x4 and y;.

(i)  x,andy,

(d) Using (c), show that your answer in (a) can be expressed as

PQ = (x, —x;)v1+tan? 0

(e) Using (c), show that your answer in (b)(iii) can be expressed as

P'Q = (x, —x1)vy1+tan? 6

Notes : You should notice that your answers in (d) and (e) are the same. This shows that the
LENGTH between 2 points on a coordinate plane is INVARIANT (“~%#/Y) under
coordinate frame TRANSFORMATION (#&f4). In the beginning of this Chapter, we will

focus on figuring out a similar quantity like LENGTH which is also invariant under
transformation of the spacetime axes.
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6.1 - Spacetime Interval

In this section we will introduce the idea of spacetime interval (as similar to distance between 2

points in the x-y coordinate plane).

Hey, Alvin, look at this.

After doing the “CHAPTER

STARTER”, | found that If |

use a new coordinate y Y,
system x’, y’ in Cartesian

coordinates, | can get the

! ! ! [}
same distance PQ. Q' (z2,45) X
P o Q(z2,v2)
/ ! !
P (3:11 yl)/ s
.’P(mls yl)
\9 » X

0,0’

Actually, in the spacetime And the derivation of
diagram we can have similar | | the spacetime interval

invariance (A#4). Thisis | |turns out to be quite
illustrated by the concept of | |simple. We shall see it
spacetime interval. in the Example 6.1

=
e =

Spacetime interval (F3Z51E&fH ) is like the “distance” between 2 points in a coordinate plane, but in
the context (£ &%) of relativity, this “distance” refers to the “Spacetime distance” between 2
events (55{4:) in a spacetime diagram. We want this physical quantity (73 &) [i.e. Spacetime
interval] to be invariant (“~%8fY) [That will not be changed under frame transformation (#&#4)] as
it is like for length between 2 points on the coordinate plane.

We will show you that the expression foe spacetime interval is somehow similar to that of
Pythagoras Theorem (=S HTEH), but with a slight difference.
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57 Example 6.1

Let’s assume in the S-frame (which is an inertial rest frame), there is a rod of proper length L,
at rest. Relative to the S-frame, there is another moving inertial reference frame S’. At t =0, the
back end and the front end of the rod is at point Q and P on the x-axis in the S-frame
respectively. After some time, the front end and the back end of the rod intersects the x’-axis at

point Q" and P’ respectively. The following spacetime diagram illustrates the situation.

ct & 4 ct'

»X

(a) Which TWO events (out of events P, P/, Q, Q') happen simultaneously in the S-frame? How
about in the S’-frame? Are your answers the same for both frame? How is this related to an

important concept in relativity?
(b) Denote Q'(0,xq) and P’(0,xp) as the coordinates (', x') for Q" and P’ in the S’ frame.
Compute the spatial difference Ax' = x; — x; and the time difference cAt' = c(t; — t;)

between events Q" and P" in the S’ frame in terms of x4 and xp.

(c) Denote Q'(tq,Xq) and P'(tp,x,) asthe coordinates (t, x) for Q" and P’ (NOT Q and P) in the
S frame. Compute the spatial difference Ax = x, — x; and the time difference
cAt = c(t, — t;) between events Q' and P’ in the S frame in terms of xq and Xp.

(Hint : You need to use Lorentz Transformation.)
(d) Let’s define a quantity called the “fake” (& /EiHY) spacetime interval
AS? = (cAt)? + (Ax)?

Compute AS? (in S frame) and AS'? (in S’ frame) for events Q" and P’. Hence show that

AS? # AS'2.
(e) Show that if AS? = —(cAt)? + (4x)?, then AS? = AS'2.
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[Solutions]

(a) Which TWO events (out of events P, P’, Q, Q') happen simultaneously in the S-frame? How
about in the S’-frame? Are your answers the same for both frame? How is this related to an
important concept in relativity?

[Sol]
In the S-frame : Events P and Q
In the S’-frame : Events P" and Q’

The answers are NOT the same. This again shows that “Simultaneity is not an absolute idea in
relativity.)

(b) Denote Q'(0,xq) and P'(0,xp) asthe coordinates (t’, x’) for Q" and P’ in the S’ frame.
Compute the spatial difference Ax’ = x; — x; and the time difference cAt’ = c(t; —t1)
between events Q" and P" in the S’ frame in terms of x4 and Xp.

[Sol]
Ax' = xp — xg

cAt' =0

(c) Denote Q'(tg,Xq) and P’(ty,,x,) asthe coordinates (t, x) for Q" and P’ (NOT Q and P) in
the S frame. Compute the spatial difference Ax = x, — x; and the time difference
cAt = c(t, — t;) between events Q' and P’ in the S frame in terms of xq and Xp.

(Hint : You need to use Lorentz Transformation.)
[Sol]

Ax = x, — x4 =y(xp + utp) — y(x’Q — ut(’z) = ]/(x,S -+ u(O)) -y (x(’2 — u(O))

= y(xp — x¢)

. uXp . uxg uxp ux!
car=clty ) ”[V<t"+c—z>‘y<t@ +_Q>] ”[V(“c—z)‘y(“c—f)]

Yo o
- T(xp - xg)
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(d) Let’s define a quantity called the “fake” (& {EzHY) spacetime interval
AS? = (cAt)? + (4Ax)?

Compute AS? (in'Sframe) and A§’2 (in S” frame) for events Q" and P’. Hence show that

AS? + AS'?,
[Sol]

AS = (cAt)® + (4x)* = [% (xp — xé)]z + [y(xp — xé)]z =y?(xp — xé)z (1 + 1;—2>

AS' = (cAt')? + (Ax")? = (0)* + (xp — xé)z = (xp — x(’z)z

Obviously, AS? # AS’2. (Notes : Pythagoras Theorem doesn’t seem to work in relativity...)

(e) Show that if AS? = —(cAt)? + (4x)?, then AS? = AS'?.
[Sol]

AS = —(cAD? + (Ax)? = — [% (xp — x(lz)] + [y(xp — xé)]z =y%(xp — xé)z (1 — u_>

V(b -xp)"
= Pyz : :(XP_xQ)

AS' = —(cAt')? + (4x")? = —(0)* + (xp — XQ)Z = (xp - xé)z

Obviously, AS? = AS’2. (Notes : In relativity, Pythagoras Theorem is still the same, only there

is an additional negative sign in front of the “time difference”.)
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Tc“ﬁ Challenge 6.1

Let’s assume in the rest inertial reference frame (S-frame), there is a clock at rest at the position
x = x. There is another inertial reference frame (S’-frame) moving at a speed u relative to the
S-frame. At t = tp, the clock intersects the x’-axis of the S’-frame. The point Q indicates the
space-time position of the clock when t = t,. The following spacetime diagram illustrates the

situation.

World Line of Clock

(a) Event P and Q happen at the same place in the S-frame. How about in the S’-frame?
(b) Compute the spatial difference Ax = x, — x; and the time difference cAt = c(t, —t;)

between events Q" and P’ in the S-frame in terms of t, and tq.

(c) Denote Q'(tq,xq) and P’(tp,xp) asthe coordinates (t, x) for Q" and P’ (NOT Q and P) in
the S’-frame. Compute the spatial difference Ax’ = x5 — x; and the time difference
cAt' = c(t; — t;) between events Q' and P" in the S’-frame in terms of tp and tq.

(Hint : You need to use Lorentz Transformation.)
(d) Let’s define a quantity called the “fake” (F&{EHY) spacetime interval
AS? = (cAt)? + (Ax)?

Compute AS? (in S-frame) and AS'? (in S’-frame) for events Q" and P’. Hence show that

AS? # AS'?.
(e) Show that if AS? = —(cAt)? + (4x)?, then AS? = AS'2.
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From Example 6.1 and Challenge 6.1, we can see that spacetime interval (Ff2Z2[&fH) AS? is

defined by

AS? = —(cAt)? + Ax?
This physical quantity (73 &) is invariant (“~%£1Y) no matter you are talking about it in a rest
frame or in a moving reference frame.

6.2 — Proper Time Intervals and Proper Lengths

In this section, we will show that the proper time intervals and proper lengths are hyperbolas

(EE[h4%) on the spacetime diagram.

Let’s consider 2 events O = 0(0,0) and P = P(tp,xp) in the restinertial reference frame
(S-frame). The spacetime interval between these 2 events in the S-frame will be:
AS? = —[c(tp — )]* + (xp — 0)2 = —(ctp)? + x3

ct 4
P.
(T, Xp)
AS? = —(ctp)2+x;
@ » X
0(0, 0)

We define a new parameter (&) T such that:
AS? = —(ctp)? + x% = —(cT)?

Now, we introduce a new moving observer S’ such that he moves at a speed vp given by
Xo\2
Vp =
tp

Up till the present, we still have not successfully found anything which can move faster than the
speed of light (or if you like, can travel back in time), so it is fair to suggest that

x 2
V3 = (—P> < c?
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Then, in the S’-frame, we will have the spacetime coordinates of O (0’) and P (P’) as 0’(0,0) and
P’(tp, 0). Note that in this formulation, the S’-frame is actually moving together with an imaginary
particle moving along OP.

ct a ct’ 4

2 = —(cAt)? + (Az')?

0°(0,0)

The spacetime interval between the 2 events O and P’ in the S’-frame will be:
AS? = —[c(tp — 0)]* + (0 — 0)* = —(ctp)?

Then, making use of the invariance of spacetime interval, we have

AS? = AS'?
—(cT)? = —(ctp)?
T =tp

This shows that the proper time interval (A {ZHFREFF) in the S'-frame agrees with that in the S-
frame (i.e. The 2 proper “times” as measured the clocks in the S-frame and S’-frame are the same)
as long as

—(ct)? = =(cD? = =(ct)? + (x)?

which, if we plot it on the spacetime diagram, are hyperbolas (2£1f4%) along the ct axis.
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®

-16

Along the hyperbolas, all observers (in ANY FRAME) will agree with the same proper time
(ie. t=1,23..)

7
y 4
—G=.2 16 2.=4 3.2 o
X
For example, the proper time measured by the RED, and GREEN observers are all T (y-

intercept of the hyperbola) as they move from O to the hyperbola.
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This is quite the story for the “proper-time hyperbolas”. Now we will move on to talk about proper
lengths.

Similarly, we consider 2 events: O = (0,0) and Q = (tq,Xq) inthe S-frame.

ct 4 ct’ World Line of light
9 Q(tQ ) XQ) ’
o} X
_.
Y

» X
0 (0, 0)

The spacetime interval between events O and Q in the S-frame will be

AS? = —(cAt)? + (4x)? = —(ctQ)z + x5

We define a new parameter (&) D such that:
AS? = —(ctp)? + xp = D?

Now, we introduce a new moving observer S’ such that he moves at a speed v given by

x 2
to

Up till the present, we still have not successfully found anything which can move faster than the
speed of light (or if you like, can travel back in time), so it is fair to suggest that

With such formulation, we will have both events 0" = (0,0) and Q" = (0,x;) happen

simultaneously in the S’-frame. Note that this is because the S’-frame moves at a speed fast

enough such that O and Q happen simultaneously in his frame.
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The spacetime interval between the 2 events O and Q' in the S’-frame will be:
AS? = —[c(0 — 0)]% + (x4 — 0)° = x}”

Then, making use of the invariance of spacetime interval, we have

AS? = AS'?
2 _ 12
D = X
D=x(’2

This shows that the proper length interval (A= EE[F) in the S'-frame agrees with that in the S-
frame (i.e. The 2 proper “lengths” as measured the observers in the S-frame and S’-frame are the

same) as long as
x'* = D% = —(ct)? + (x)2

which, if we plot it on the spacetime diagram, are hyperbolas (2[45) along the x axis.
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®

Along the hyperbolas, all observers (in ANY FRAME) will agree with the same proper lengths
(iie. x=1,2,3..)

-0.5

For example, the proper lengths measured by the RED, and GREEN observers are all L
(x-intercept of the hyperbola) as they move from O to the hyperbola.

The following diagram shows the usual applicable form of spacetime diagram.

*h 4
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/§7 Example 6.2

Consider the following spacetime diagram. An inertial rest frame (S-frame), a moving inertial

frame (S'-frame) and 3 events— 0(0,0), P and Q are shown.

ct , ct
247
16T
v
— ] . X|
08T
U
+ . [ —> X
0.8 ‘ 16 24 32

(a) By considering events O and P in the diagram, show the time dilation effect WITHOUT

doing any calculations.
(b) By considering events O and Q in the diagram, show the length contraction effect
WITHOUT doing any calculations.

[Solutions]

(a) By considering events O and P in the diagram, show the time dilation effect WITHOUT

doing any calculations.

[Sol]

As seen in the figure below, the time coordinate of P in the S-frame is beyond ct = 2, while
that in the S’-frame is still at ct = 2. This shows that “A moving clock (the proper time
measured in the S’-frame) moves slower (than that in the S-frame)”, which is the time

dilation effect.
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WITHOUT doing any calculations.
[Sol]

contraction effect.

(b) By considering events O and Q in the diagram, show the length contraction effect

As seen in the figure below, the space coordinate of P in the S-frame is beyond x = 2, while
that in the S’-frame is still at x = 2. This shows that “A moving rod (the proper length

measured in the S’-frame) contracts (compare to that in the S-frame)”, which is the length

t=2
.C N\

Ct , ct
Beyond ct = 2! 24T
N -
16T
y .
i Q v X
08T
U . | . L L
: b e ) ,{ & X
X
I Beyond x = 2!

rc‘ﬁ Challenge 6.2

(i)  The eventP.

from the S’-frame.

Transformation equations.

Consider 2 inertial reference frames, S-frame and S’-frame in standard orientation (i.e. Both
origins O and O’ coincide at (0, 0)). The S’-frame moves with a velocity 0.6¢ along the x-axis
relative to the S-frame. An event P occursas ct = 10 and x = 8 in the S-frame.
(a) Sketch the following items on a standard hyperbola graph paper.

(i) The ct’ and x” axes of the S’-frame.

(b) Using your graph in (a), determine the time (ct’) and space (x’) coordinates of event P as seen

(c) Check that your results in (b) agrees with that you obtain by using the Lorentz
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Key Points

6.7 Spacetime interval

e “Spacetime interval” is analogous to “length” in usual Cartesian planes, but it refers to the
“spacetime-difference between 2 events”, and is defined by:
AS? = —(cAt)? + (4x)?
which is invariant in all inertial reference frames.

6.2 Proper Time Intervals and Proper Lengths

* Propertime intervals in different inertial reference frames agree as long as
—(ct)? = =(cD? = =(ct)? + (x)?
which are hyperbolas along the ct axis in the spacetime diagram.

* Properlengths in different inertial reference frames agree as long as
x'* =D% = —(ct)? + (x)2

which are hyperbolas along the x axis in the spacetime diagram.

Key Terms

Anti-clockwise 75HE & P.1 Context & P.3
Coordinate geometry JEf& 2k (o] P.1 Deceive HkER P.1
Event {4} P.3 Fake FE{RHY P.4
Hyperbola &4 P.9 Invariant Y P.2
Invariance &4 P.3 Parameter & P.8
Physical quantity ¥/ & P.3 Proper time interval ANEHS R P.9
Proper length interval AEEEEIE P.12 Pythagoras theorem (% EH P.3
Rotate JjgiE P.1 Spacetime interval BFZE|&R P.3
Transformation i P.2
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Check Your Concepts

1. What does it mean by “spacetime interval”? What properties do it have? [Section 6.1]

2. What is the mathematical expression for spacetime interval? [Section 6.1]

3. What do the hyperbolas along the ct-axis and the x-axis represent in a spacetime diagram?
[Section 6.2]

Historical Profile

Karl Schwarzschild was a German physicist and astronomer. He was also the father of
astrophysicist Martin Schwarzschild. He provided the first exact solution to the Einstein field
equations of general relativity, for the limited case of a single spherical non-rotating mass,
which he accomplished in 1915, the same year that Einstein first introduced general relativity.
The Schwarzschild solution, which makes use of Schwarzschild coordinates and the
Schwarzschild metric, leads to a derivation of the Schwarzschild radius, which is the size of the
event horizon of a non-rotating black hole. Schwarzschild accomplished this while serving in the

German army during World War I.

Page 17



Two events P(%,S) and Q(%,7) are

observed in an inertial rest frame S.
Another inertial frame S’ is moving

relative to S at a speed of 0.8c. Find

the spacetime interval AS'* between

events P and Q as seen from the

S'-frame.
8
B. —8
C. 0
D. Not enough information is given

to deduce the answer.

Which of the following(s) about
“spacetime interval” is correct?

(1) It is the same in all inertial reference
frames.

(2) It describes the space-time
difference between events in space-
time.

(3) It is path-independent. (i.e. It is the
same no matter if we evaluate it
along a straight path or a curved

path)
A. (2) only
B. (3) only
C. (1) and (2) only
D (2) and (3) only

IChapterE — More About Spacetime Diagrams @

How do we call the lines described by
the equation

x'? = —(ct)? + x2

where ct and x are the usual time and
space coordinate, and x’ is the space

coordinate in another inertial reference

frame?
Parabolas
B. Circles
C. Cycloids
D. Hyperbolas

If 2 events have the same spacetime
interval, which of the following must be
correct?

A. There is always a frame for
which the 2 events happen
simultaneously.

B. There is always a frame for
which the 2 events happen at
the same place.

C. The 2 events are actually the
same. This is analogous to the
Unigueness Theorem.

D. None of the above.
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Consider the following spacetime diagram.

ct

A

c(5,3) B(5,8)

o o

~
”
”
”
”
”
”
P d
”

o

A (2,3)

(a) Compute

(i) AS3. (spacetime interval between A and C)
(ii) AS%B (spacetime interval between C and B)
(i)  AS3z (spacetime interval between A and B)

(b) Whatis AS%. + AS25? Compare your answer with that in (a)(iii).
(c) Does your answer in (b) implies that spacetime intervals are path-independent? If yes,
explain briefly. If no, can you try to suggest a counter-example?
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[Question 1] (Difficulty : * * )
We have verified that spacetime interval can be described by the equation:
AS? = —(cAt)? + (4x)?
in Example 6.1 and Challenge 6.1 using 2 relatively simple approach. Now, we want to use a
different approach to verify the result.

Consider the case below. A Doraemon is standing in the middle of a bus moving at a speed u to
the right relative to the ground. Two of his friends, A and B, are at the left and right of the bus. Yiu
Yung is standing outside the bus. At t =0, Doraemon and Yiu Yung align in the same line in space.

d d

o o
Lot} L

A

(a) Sketch a spacetime diagram, showing the world lines of Doraemon, A, B and Yiu Yung. Take Yiu
Yung’s frame to be the S-frame (the rest inertial frame) and that of Doraemon to be the S’-

frame. You may assume that the origin of the S-frame and S’-frame coincide.
(b) At t = 0, Doraemon sends 2 light signals simultaneously to A and B. Sketch the world lines of
the 2 light signals on the same spacetime diagram. Mark the point at when the light signals

reach A and B as events M and N respectively.

(c) Let the spacetime coordinates of event M and N be M(t7,x;) and N(t},x5) asintheS'-
frame. What is the relationship between t; and t;?

(d) Compute the spacetime interval between M and N in the S’-frame.

(e) Repeat (d) for the S frame. Hence show that spacetime interval is invariant in all inertial

reference frame.
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®

[Question 2] (Difficulty : x x x )
In relativity, there is a theory claiming (and it is actually quite plausible) that there exists another

universe which is almost disconnected from ours. We can illustrate it on a spacetime diagram.

" //
-2 -1, X 1.6 2.4 3.2

08

The right hand side of the graph represents the usual universe we live in, while the left hand side
represents the other parallel universe. The blue regions represents 2 important and yet up till
today remaining-mysterious astronomical objects, the black-hole (upper) and white-hole (lower).
They are undefined regions in which no one knows what is happening inside.

(a) Suppose you are standing at rest at x = 1. Sketch your world line on the diagram. Note that
you SHOULD NOT extend your world line into the undefined regions.

(b) Suppose in the parallel universe, another you is also at rest at x = —1. Sketch his / her world

line on the diagram. Note that you SHOULD NOT extend his / her world line into the undefined
region.
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(c) Suppose at t = 0, you emit a light signal to your “clone” in the parallel universe. Sketch the
world line of the signal. (EXTEND the world line to the undefined region using dotted line.)

lgnore the undefined region, can the signal ever reach your clone?

(d) Suppose at t = 0, your clone emit a light signal to you from the parallel universe. Sketch the
world line of the signal. (EXTEND the world line to the undefined region using dotted line.)

lgnore the undefined region, can the signal ever reach your clone?

(e) In case both you and your clone fall into the undefined region, can you and your clone receive

the signals? Show your answer graphically.

[Question 3] (Difficulty : * x x x )
Refer to the spacetime diagram below. In a rest inertial frame S, there are 2 events P and Q.

(a) In the S-frame, which event, P or Q, happens first?

(b) Suppose time is reversible (E]#HY). A man tries to travel back in time.
(i) If the man wants to see that the events P and Q happen in an reverse order compare to

that in the S-frame. Suggest and sketch an appropriate pair of x’ and ct’ axes on the

spacetime diagram for the man.
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(ii)  If we reflect P and Q along the x-axis, we will get 2 more events P’ and Q'. In what order
will P” and Q" happen in the time-traveller’s frame you suggested in (b)(i)? How about

the S-frame?

[Question 4] (Difficulty : x x * x x )
Note : This question requires basic knowledge about cylindrical and spherical coordinates.

We have only been dealing with 1-D problems by now so far. In general, the spacetime interval in

3-D Cartesian coordinates can be described by:
AS? = —(cAt)? + (4x)? + (Ay)? + (4z)?

We now want to express the 3-D spacetime interval using cylindrical coordinates and spherical

coordinates.

(a) Using the fact that in cylindrical coordinates,
x =rcos(6)
y =rsin(0)
zZ=2z
(i) Show that
Ax = (Ar)(cos(0)) — r(sin(6))A40

Need a helping hand?
The A here means an infinitesimal change of something. You can regard it as

differentials.

Suppose we have a function f(x,y) consisting of 2 variables, we have

df—afxd +af><d
0x X dy Y

(i)  Show that
Ay = (Ar)(sin(6)) + r(cos(6))40

(iii)  Using (a)(i) and (ii), show that the 3-D spacetime interval expressed in cylindrical

coordinates is given by:
AS? = —(cAt)? + (Ar)? + (rd0)? + (42)?

Page 23



IChapterG — More About Spacetime Diagrams @

(b) Using the fact that in spherical coordinates,
x = rsin(@) cos(¢p)
y = rsin(0) sin(¢)
z =rcos(0)
Show that the 3-D spacetime interval expressed in spherical coordinates is given by

AS? = —(cAt)? + (Ar)? + (rd40)? + (rsin(8) A¢p)?

[Question 5] (Difficulty : x x x x x %)
Let’s consider a fixed point (the origin O) in spacetime. If we shoot 2 light rays from point O left

and right, we will get 2 world lines of light signals as shown:

ct Future Light Cone
% N
N\ ’
N ’
\ /
N ’
N ’
S %
2 >X
0]

Past Light Cone

The red part refers to the region which is future relative to point O. While the yellow part is
something that happens in the past relative to point O. We say the red part is the future light
cone, and the yellow part is the past light cone relative to point O.

(a) Consider an event N which is neither in the future light cone and past light cone of point O as
shown below. Show graphically that event N is never influencing (£225%) point O. Explain your

answer briefly.

ct 4
% N
\ /
\ /
\ 7
\ /
\ /
S
2 »X

0

Q.
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(b) What is the equation of the 2 world lines of light signals which passes through the point O in
terms of ct and x? (Hint : Think about this in Cartesian coordinates — What is the equation of
straight lines in the x-y plane making an angle 45° with the x-axis and passing through O?)

(c) Let’s consider the future light cone (red part).
(i) For x <0,
(1) Write down an inequality describing the left-red region.
(2) Show that your answer in (1) can be written as:
—(c)?+x2>0
(Warning : This is no simple business. The reason is although 2 > —3, but
(2)?2 = 4 # (—3)? = 9. Think really carefully if you are doing

mathematical-“legally”)

(i) For x>0,
(1) Write down an inequality describing the right-red region.
(2) Show that your answer in (1) can be written as:
—(c)?+x2>0

(d) Recall that spacetime interval is given by:
AS? = —(cAt)? + (Ax)?
Using your answer in (c), show that
AS? <0
is a critical condition such that events can influence or be influenced by point O. Note that this
is the same as saying that events must lie in the past or future light cones of O in order to

influence or to be influence by point O.

(e) Can you guess the condition for events not to influence or to be influenced by O?

[Notes]
(1) For events which can influence each other, we say that they are timelike-separated, with the

condition: AS? < 0

(2) For events which cannot influence each other, we say that they are spacelike-separated, with
the condition: AS? > 0

(3) For events which can influence each other only by sending a light signal to each other (this is

the only method), we say that they are null-separated, with the condition: AS? = 0

~The End™
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