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NSS Physics Insight – A short introduction to Special Relativity is a self-study textbook. 
It is designed for NSS students and junior undergraduate students.

As a Physics undergraduate student, I have never imagined publishing an e-book in 
my 4-years of studies. Here, I must deliver my thanks to those who helped me with this 
project.

This e-book was originally the project work for Dr Lin Lap Ming’s course (PHYS3420 –
Topics in Contemporary Physics). For Physics courses (except for experimental courses), it 
is really rare that students have to do a project. Dr Lin has truly provided us an 
opportunity to exercise our special relativity knowledge, as well as creativity. I would like 
to thank Dr Lin here, for without without Dr Lin’s course, this e-book would not have even 
appeared! Dr Lin has also encouraged us to present our work at the 1st CUHK Physics 
Student Conference, which made our work become known to many physics students and 
teachers at CUHK, and finally lead to this golden opportunity of publishing this e-book.

After the conference, Professor Chu Ming Chung and Dr Leung Po Kin explained that 
our work is somehow similar in nature to what they are doing for a e-learning project, 
and granted us the chance to further polish our work and publish our work together in 
their project. Since last year’s June, we have been working with the e-book and Dr Leung 
and Professor Chu have given us a lot of useful advice and opinions throughout this 
journey. I would like to express my gratitude of thanks to them.

My partner Yiu Yung is another person I must show my appreciation to. Without his 
help and support, I may not be able to complete this whole work. I must also thank him 
for his creativity and persistence.

As for myself, I have learnt a lot throughout this project, including how to type 
equations quickly in Microsoft Office, how to make illustrations using Keynote in Mac, 
and of course knowledge about Special Relativity. Many of my Physics teachers have 
always said that being a teacher is the best way to learn Physics, and now I understand 
why. Before you teach, you must make sure what you write and teach is correct. If you 
want your readers / students to understand what you are teaching, you must first make it 
clear to yourself first. Here is a quote from Albert Einstein that I really like :

“If you can’t explain it simply, you don’t understand it enough…”

Long story short. I better end my preface here before I try to write more. 
Last but not least, allow me to thank everyone who helped with this project, 
or simply those who changed my life once again.

Preface
Li Ka Yue Alvin, Pang Yiu Yung
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1.1 - Review on motions 

Let’s consider a smart rabbit below. 
 
 

 
The rabbit first moves 4 m from point A to point B, then moves 3 m from point B to point C. 

What is the distance travelled by the rabbit? 

 
Distance travelled is the total length of path taken by the observed object. It is a scalar quantity 

which consists of magnitude. 

In this case, the distance travelled by the rabbit is just : 4m + 3m = 7m 
 

In physics, we often care about the displacement of the observed object more. Displacement 

is the distance between the starting position and final position of the observed object. It is a 

vector quantity which consists of both magnitude and direction. 

 
In this case, 

Starting point of the rabbit : Point A Ending Point of the rabbit : Point C 

The displacement vector is the red arrow in the diagram above. 

The magnitude of the displacement s is given by the Pythagoras Theorem, which is 

𝑠 = √32 + 42 = 5 m 

   

  And the direction of the displacement is given by θ = tan−1 (
4
3

) 
 

Chapter 1 Pre-Requisite Knowledge 

In this section we will review some of the important concepts and physical quantities used to 

describe motions. 
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Let’s suppose the rabbit takes 2 s to run from point A to point C via point B. What is the average speed 

of the rabbit? 

 
Speed is a scalar quantity which shows how fast the observed object moves along its path of 

motion. Generally, it is the distance travelled by the object divided by the travelling time. 
 

 

In this case, the speed of the rabbit is just :   
7m

2s
= 3.5 m s−1 

 

In Physics, we often care more about the velocity of the object than its speed. 

 
Velocity is a vector quantity which shows how fast is the change in displacement of the object. It 

consist of both magnitude and direction. 

 
Generally speaking, the direction of the velocity vector is the same as that of the displacement 

vector. The magnitude of the velocity vector is just : 
 

In our case, the average velocity of the rabbit is just : 
5m

2s
=  2.5 m s−1 
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From Example 1.1, we see that the rabbit’s velocity increases along AC. The rate of change of 

velocity of an object is called acceleration. We define acceleration as 
 

For instance, if the rabbit in Example 1.1 changes its velocity from 2 m / s to 3 m / s in 0.5 s time, 

  then the acceleration of it will be   
3−2

0.5
= 2 m s−2

 

 

Acceleration is a vector quantity. This follows that even if the object is moving at constant speed, if 

it is changing direction, then its acceleration is also non-zero. 

 
The following schematic diagram summarises the relations between distance travelled, 

displacement, speed, velocity and acceleration. 
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If the motion of the observed object is under uniform acceleration (i.e. the acceleration is 

constant), then we have 4 equations of motion describing the object. 

 
We will just state the equations here without proof. You are, however, encouraged to proof 

the equations of motion for uniformly accelerated motion in the Problem Set of this Chapter. 

where u = initial velocity, v = final velocity, t = time elapsed, a = acceleration, s = displacement 

 

1.2 - Galilean Transform 
Let’s consider the diagram below. 

 

There is a rabbit in Alvin’s frame. According to him, the rabbit has position R (x, y). 

 
Alvin’s friend, Yiu Yung, is at a distance rightwards from Alvin. What would be the coordinates of 

the rabbit in Yung’s Frame? 

 
It is obvious that for the y’ coordinate, it is same as that of y. 

But for the x’-coordinate, it will be changed to x’ =  − h +  x. 

x′ = (Try to sketch on the diagram above to make yourself 

clear!) 

 
Thus the coordinates of the rabbit in Yung’s frame will be R’ = (x’, y’) = ( - h + x, y). 

 

In this section we will illustrate the transformation of displacement and velocity from one inertial 

frame to another in the non-relativistic point of view. 
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Now suppose Yung is moving to the right at a uniform speed of u’ starting from time t = 0. 
 

 

From Alvin’s point of view : - Initial position of Yung = (x, y) = ( , ). 

- After time t, the position of Yung = (x, y) = (  , ) 

From Yung’s point of view : - Initial position of Alvin = (x’, y’) = ( , ). 

- After time t, the position of Alvin = (x’, y’) = (  , ) 
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The above equation which relates x and x’ are called the Galilean Transformation of coordinates. 

 
We will later see that this transformation is useful and good approximation only for speed of 

objects much smaller than the speed of light c. 

 
At that time, we will need another kind of transformation rule which is called the Lorentz 

Transformation. 
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1.3 - Newton’s Laws of Motion 

The 1st Law : 

 
 

 
 

The 2nd Law : 

 

An object is either at rest or in uniform motion if the net force acting on it is zero. 

In this section we will review about the 3 important laws of motion stated by Newton. They are 

rather important as in classical mechanics, but it is as important in understand General Relativity. 

The acceleration of an object is directly proportional to the net force acting on it, and 

inversely proportional to its mass. Mathematically, 

𝐅 = 𝐤𝐦 

 much greater than Yung.  
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The 3rd Law : 

 

 
 

 

 
 

For every action force, there must be a reaction force. The pair of forces are equal in 

magnitude, opposite in direction, acting on different bodies and are of the same nature. 
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Key Points 

1.1  Review on motion 

 

(a) Distance, displacement, speed, velocity, acceleration 
 

 

(b) Equations of uniformly accelerated motions 

 

1.3  Newton’s Laws of Motion 

 An object is either at rest or in uniform motion if the net force acting on it is zero. 

 The acceleration of an object is directly proportional to the net force acting on it, and 
inversely proportional to its mass. Mathematically, 

𝐅 = 𝐤𝐦 

 For every action force, there must be a reaction force. The pair of forces are 

equal in magnitude, opposite in direction, acting on different bodies and are of 

the same nature. 

 

 

 

 

  

 acting on it is zero. 
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Key Terms 
100 m hurdles 100 米跨欄 P.5 Acceleration 加速度 P.5 

Action force 作用力 P.10 At rest 靜止 P.9 

Average 平均 P.4 Displacement 位移 P.3 

Galilean Transformation 伽利略變

換 

P.8 Lorentz Transformation 勞侖茲變

換 

P.8 

Magnitude 數值 P.3 Mass 質量 P.9 

Nature 性質 P.9 Net Force 淨力 P.9 

Newton 牛頓 P.9 Opposite 相反 P.10 

Proportional 成比例 P.9 Reaction Force 反作用力 P.10 

Speed 速度 P.4 Uniform acceleration 勻加速度 P.6 

Vector 矢量 P.3 Velocity 速率 P.4 
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Multiple Choice Questions 

 

1.  A person standing on the ground. 

Which following statements are 

correct? 

1. The gravitational force acting on you 

by the Earth and the force acting on 

you by the 

ground are the action and reaction 

pairs. 

2. The gravitational force acting on you 

by the Earth is equal to the reaction 

force acting on you by the ground. 

3. There is no reaction force acting on 

you when you are punching other. 

 A.  1 only 

 B.  2 only 

 C.  1 and 2 

 D.  2 and 3 

 

2.  The bus travelling on the road with an 

acceleration. What is the change in 

velocity of the bus after 5 seconds for 

5ms−2 and 2 seconds for −5ms−2 ? 

 A.  15ms−1 

 B.  25ms−1 

 C.  −10ms−1 

 D.  35ms−1 
 

 

3.  John and Kelly are running to same 

direction from the park. John starts 2 

minutes earlier than 

Kelly and his speed is 18km/h. It is 

known that Kelly’s speed is twice that 

John. When would 

Kelly can pass John? 

 A.  1 minutes 

 B.  2 minutes 

 C.  3 minutes 

 D.  4 minutes 

 

4.  From Galileo’s experiment, which 

following statement is correct? 

 A.  The speed is proportional to 

the object’s weight. 

 B.  The speed of the metal object 

is smaller than other one. 

 C.  The speed of the object at 

same height to the ground is 

the same. 

 D.  All of above are correct. 
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Short Questions 

1. Under Galilean Transformation, when we are travelling in high speed and 

try to measure the 

speed of light. What values are we can measure? 

a) The speed is 500ms-1 . 

b) The speed is 10000ms-1 

c) The speed is 0.5c 

d) The speed is 1c 

(which c is the speed of light) 

2. The spaceship is moving at 500ms-1 toward the Earth. At same time, a 

missile has been 

launching from the Earth toward the spaceship. The collision of them is after 

3 minutes later. 

(Assume both of them are not affected by external force) 

(a) What is the speed of the missile? 

(b) Meanwhile, the owner of the spaceship immediately know the missile is 

coming. He turn the 

spaceship opposite direct and try to escape. If the speed of spaceship still the 

same, will the 

missile attack it? If yes, how long after it launched? 
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Structured Questions 

 [Question 1] 

In a recent TV programme “逃げるは恥だが役に立つ”, the ending dance 

was surprisingly popular and attracted many people to learn the dance. 

 

In one part of the dance, the dancer moves 8 steps forward while shaking their hands 

and fingers. And then jump 9 steps backward. 

 
(a) What is the total distance travelled of the dancer at the end? 

(b) What is the total displacement of the dancer at the end? 

(c) Let’s assume that the dancer uses 8 seconds to move forward, and uses 6 seconds 

to jump 9 steps backward. Find the respective average velocity of the dancer for 

the forward and backward motion. 

(d) Has the dancer accelerated during the forward and backward motion? Explain your 
answer. 

(e) A student claims that if the dancer has an extra step, he / she may have zero 

displacement. Do you agree? If yes, state whether the extra step should be in the 

forward motion or in the backward motion. 
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[Question 2] 

Consider the following diagram. Yung is at a distance h rightwards from Alvin. Yung is 

moving to the right at a speed of u, while Alvin is moving right at a speed of v. 

 
 
 
 
 
 
 
 
 
 

 

(a) Let’s consider the case of v = u. From Alvin’s point of view, will Yung move away 

from him, move towards him or will he be at rest? 

(b) Let’s consider the case of v > u. Assume initially Yung’s coordinate in Alvin’s frame is 

Y =  Y (h, y). Find Yung’s coordinates after time t in Alvin’s Frame. From Alvin’s point 

of view, will Yung move away from him, move towards him or will he be at rest? 

(c) Let’s consider the case of v < u. Assume initially Yung’s coordinate in Alvin’s frame is 

Y =  Y (h, y). Find Yung’s coordinates after time t in Alvin’s Frame. From Alvin’s point 

of view, will Yung move away from him, move towards him or will he be at rest? 

(d) Redo (a) - (c) from the point of view of Yung. Assume that initially Alvin’s 

coordinates in Yung’s frame is A =  A ( −h , y’) 
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[Question 3] 

According to myths, the famous scientist Galileo once conducted an experiment on the 

tower of Pisa by throwing 2 objects of different masses onto the ground. He wanted to 

show that the acceleration of objects is independent of their masses. 

 

(a) Draw a free body diagram for one of the object, showing all the forces acting on it. 

You may neglect air resistance. 

(b) State Newton’s 1st Law of Motion, and hence explain whether the object is at 

rest or in uniform motion. 

(c) A student claims that in this case, there is no action-reaction force pair concerning 

the falling object. Comment on his statement. 

(d) If Galileo used a metal ball and a very light feather for his experiment, what 

would be the result? Does it violates Galileo’s conclusion? Explain your answer. 

 

 [Question 4] 

The man try to across the river which has width 50 meter. The speed of the water flow is 

flowing to downward. 

(a) The man swims at 2m/s 

(i) How long does he arrive the opposite river bank? 

(ii) What is his vertical displacement? 

(iii) What is the direction of his final position? 

(b) The man swims to upward and has an angle 40o to the river flow. 

(i) If he has no vertical displacement when he arrive the opposite side, what is his 

speed? 

(ii) If he swims to downward and keep the angle, what is his vertical displacement? 
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[Question 5]

 

 

Flash man is running on the one direction road. A snipper, who is behind 150 meters from 

Flash man, is trying to shoot Flash man. It is given that the speed of bullet is 1200 m/s. 

 

(a) What is the time for the bullet to hit Flash man who travels in 100 m/s? 

 

(b) If Flash man starts to speed up before the bullet just hit, what is the speed of Flash man 

at least accelerated to? 

 

(c) If Flash man keep moving at 200 m/s, his girlfriend(standing in front of him 50 meters) 

try to say something to him. Does he hear his girlfriend’s voice first or hit by the bullet 

first? Take the speed of sound is 340 m/s. 

 

THE END 



 

2.1 - Postulates of Einstein’s Special Relativity Theory 

A postulate is an assumption made for a theory or a law. The theory / law will be correct only if the 
postulates are accepted to be true. 

 

In Einstein’s Special Theory of Relativity, he laid down 2 important postulates. Let us now go 
through the postulates one by one. 

 
The 1st Postulate : 

 

 
 

Chapter 2 Relativistic Time and Length 

In this section we will introduce the 2 important postulates in Einstein’s theory of Special 

Relativity. These lay the foundation for the development of the theory. 

The speed of light is a constant (c) in all inertial observer frames. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
It is important to note that even circular frames, which moves in uniform speed, are non-inertial, 
because it is always changing its direction of motion, and it is thus accelerating! 

 
 

Using Einstein’s postulate, the speed of light (yellow beam) is constant at 

c = 3 × 108 m s−1 in both inertial frames. 
 

The 2nd Postulate :  

 

 
 

 

The laws of physics are invariant in all inertial observer frames. 



 
 

Einstein also postulated that the physics we have been dealing with, like the usual F = ma, 
electrostatics, waves and other theories are all the same in all inertial frame. 

 

Although the mathematics might be slightly different, the overall result should remain the 
same. The all-accepted laws, like the conservation law of energy and momentum, should not 
change when we switch from a rest frame to a uniformly moving frame. 

 
 

 
In the last question of Challenge 2.1, you are asked about whether or not you are an 
inertial observer. 

 

Certainly, if you consider the daily and yearly motion of the Earth, as it is always rotating, it is 
obvious that we are always accelerating, and thus we are not inertial observers. 

 
However, if we consider a small enough part of our Earth, such as the laboratory which we 
conduct all the physics experiment, it can be regarded as a locally inertial frame, so the laws of 
physics can still be held true, and will not lead to any contradictions. 

 
You will come again to the idea of local inertial frame when you study General Relativity. 

 



 
 

2.2 - Time Dilation 

 
 

 

What has happened in the above case? To answer this question we first need to understand the 
concept of synchronised clocks. 

 

What means by synchronisation? It means we need to make the clocks “ticks” at the same time. 

 

 

In this section we will show how we can deduce the time dilation equation. We will also illustrate 

the idea of synchronised clocks and proper time. 



 
 
 

 

It would be quite unrealistic if you think you can synchronise clock easily, because even light needs 
time to travel from one place to another, and thus it will lead to time dilation problem when you try 
to synchronise clocks. 

 

So how actually do one synchronise clocks? We shall discuss one method here. 

One way to synchronise clocks is to start them together. Here is how it’s done : 

 
 
 
 

 
We place a light source in the middle of the 2 clocks. We then turn on the light source and it will 
send 2 light signals to both the clocks. 

 

Once the clocks receive the signals, it will automatically start counting time. In this sense, we can 
ensure that the clocks are synchronised. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

It is notable that simultaneity is NOT an absolute idea in relativity. We shall illustrate this idea in 
the following example : 

 



 

 

Let’s consider the following case : 

 

Inside a moving car, there are 2 mirrors. 
 

At time t = 0, a light signal is sent from the bottom mirror to the upper mirror. After being reflected 
from the upper mirror, it returns to the bottom mirror, and stops the time counter. 

 
How much time will have elapsed at the end as seen by Doraemon? 

 
[Solutions] 

 
The total distance travelled by the light s =    

 

The speed of light in all inertial frame =    
 

The time elapsed in Doraemon’s frame t = — (1) 

——————————————————————————————————————— 

As seen from Yiu Yung’s frame, 

 



 
 

The light signal does not travel along a vertical straight paths, but rather 2 diagonals. 

How much time will have elapsed at the end as seen by Yiu Yung? 

[Solutions] 

 
The total distance travelled by the light s 

 
The speed of light in all inertial frame =    

 

The time elapsed in Yiu Yung’s frame t’ 

———————————————————————————————————————— 

If you compare the 2 time intervals, t and t’, you will see that you can actually connect the both 

results using one equation : 

 



 
 

where μ is called the Lorentz Factor which we will come across again in Chapter 3. It 

is defined as : 

 

 
The equation : 

is called the “Time dilation” equation. 
 

It is now clear why it would seems that “a moving clock” runs slower! Since u is always < c, the 
Lorentz factor will always be larger than 1. 

 

The time as measured by Doraemon, t, will hence always be smaller than the time measured by Yiu 
Yung, t’. 

 
We usually called the time interval between 2 events that occurs at the same point in space as the 
proper time. 

 

We may also refer the proper time as the time interval measured by the same clock, while the time 
interval which requires the use of 2 or more clocks as the improper time. 

 
Hence, the proper time in this case is the time interval measured by Doraemon. 

 

It is interesting to note that, when u tends to 0, the Lorentz factor tends to 1, which leads to 

the result that t = t’. 
 

 



 
Typically, when u << c/2, the Lorentz factor is very close to 1. 

 
We call the range of values u << c as the non-relativistic zone in physics. In such regions, 

relativistic effect is not important and can be neglected. 

 
Relativistic effect is only obvious when u ~ c. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

2.3 - Length Contraction 

 

 

In this section we will show how we can deduce the length contraction equation. We will also 

illustrate the relations between relativistic time and length. 



 
 

In the above case, (Doraemon / Yiu Yung) measured the proper time. 

 
In relativity, we define the length measured by a person co-moving with the object to be 

measured as the proper length. 

 
In the above case, the proper length Lo is the length measured by Doraemon, but 

Doraemon measures the improper time. 

 
The length measured by Doraemon is : 

On the other hand, Yiu Yung measures the proper time but he measures the improper length. 

The length measured by Yiu Yung is : 

 
If we combine the above 2 equations, we can get : 

Hence, we can see that the proper length of objects is contracted if it is measured by an 

observer who is not co-moving with it. We call this effect length contraction. 

 
It is notable that only lengths which are along the direction of motion will be contracted. For 

instance : 

 

In the eye of an observer on the ground, the object in blue will be seen as : 

only the width of the object is contracted, but the height remains the same. 
 

 



 



 
 
 
 
 
 
 

 
 three-fourth  

  of the original length.   
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Key Points 

2.1  Postulates of Einstein’s Special Relativity Theory 

 

(a) Postulates of Special Theory of Relativity 

The 1st Postulate : 

 

The 2nd Postulate : 

2.2  Time Dilation 

a) Synchronisation of clocks : 
 

 
We place a light source in the middle of the 2 clocks. We then turn on the light source 
and it will send 2 light signals to both the clocks. 

 

Once the clocks receive the signals, it will automatically start counting time. In this 
sense, we can ensure that the clocks are synchronised. 

 
(b) Time Dilation Equation : 

 

The speed of light is a constant (c) in all inertial observer frames. 

The laws of physics are invariant in all inertial observer frames. 



2.3  Length contraction 
 

(a) Length Contraction Equation : 

 
(b) Lorentz Factor : 

 

 

 

 

 

  

 acting on it is zero. 

 
 
 

Key Terms 

Accelerating  加速中 P.2 Automatically 自動地 P.5 

General Relativity 廣義相對論 P.3 Co-moving 同時運動 P.12 

Contraction 縮短 P.12 Correlate 使…互相有關係 P.1 

Dilation 延長 P.4 Ensure 確保 P.4 

Inertial 慣性 P.1 Invariant 不相關 P.2 

Laboratory 實驗室 P.3 Light source 光源 P.5 

Locally inertial frame 局部慣性坐標

系統 

P.3 Lorentz Factor 勞倫茲因數 P.9 

Non-relativistic 非相對 P.10 Postulate 假設 P.1 

Proper length 在相對於觀察者而

言是靜止的座標系中所量到的長度 

P.12 Proper Time   在相對於時鐘是靜止

的座標系所量到的時距 

P.9 

Simultaneously 同時 P.4 Synchronisation 同步 P.4 

Tends to 漸趨於 P.9 Unrealistic 不現實 P.5 

  

 

 



 

 
Multiple Choice Questions 

 

1.  If you siting in the rocket travelling 

close to speed of light. Which following 

is correct? 

 A.  Having infinite life time 

 B.  Being a fat/tall guy 

 C.  Your time is longer than others 

by measuring from you than the 

guy in the Earth. 

 D.  Your time is shorter than others 

by measuring from you than the 

guy in the Earth. 

 

2.  Choose the best answer to fulfill the 

following situation. Peter measured a 

super-hero across the sky. He thought 

speed of the hero was 2000 meters per 

second. 

 A.  The hero seemed taller. 

 B.  The hero seemed shorter. 

 C.  The hero was a point. 

 D.  Peter can’t see the hero. 
 

 

3.  Find the proper length of the rocket 

when it is moving in c/2 relative to the 

Earth, where c is the speed of light, the 

one on Earth measured its length is L/3. 

 A.  √3

2
𝐿 

 B.  1

2
𝐿 

 C.  2

√3
𝐿 

 D.  𝐿 

 

4.  The proper time of the rocket in Q3 is 

T, what is the time inside the rocket. 

 A.  √3

2
𝑇 

 B.  1

2
𝑇 

 C.  2

√3
𝑇 

 D.  𝑇 

 

 

 
 
 
 
 
 
 
 
 
 
 



 
 

  

Short Questions 

1. Complete the following summary. 

 
(a) Einstein proposed 2 postulates for his Special Theory of Relativity. The 1st one is that, the 

  i of light is constant in all inertial reference frames. The 2nd one is that, the laws of 

physics are  ii in all inertial reference frames. 

 
(b) In relativity,  iii is NOT an absolute idea. That is, it is not always true for 2 events to 

happen at the same time if we consider 2 different inertial reference frames. 

 
(c) The mystery of “a moving clock runs slower” can be solved by the explanation of time  iv   . 

The time interval between 2 events measured at the same position in space is called the   v  . 

 
(d) It is an important idea to  vi clocks before use in relativity. We have to make sure the 

clocks we use are in phase. 

 
(e) Proper length refers to the length of the object which is measured by an observer  vii with 

the object. If any other observers which is not moving with the object measures the length of 

the object, the length will be  viii than expected. This effect is called  ix  . 

 
(f) By consider the Lorentz factor, if the speed of the object is much smaller than the speed 

of light,  x effect is not significant and it will reduce to the normal Newtonian result. 



 

 

Structured Questions 

 

[Question 1] 

Try  to show your steps clearly in derivate the Lorentz Factor : 

 

γ =
1

√1 −
u2

𝑐2

 

 

[Question 2] 

Consider the problem in challenge 2.3. We now want to extend our discussion to a 3-D 
situation. 

 
 

 

This time, the bus moves along a straight line in 3D which makes an angle θ with the z - 

axis and an angleϕ with the x - axis. Alvin, Yiu Yung and Doraemon stand on the x, y and z 

- axes respectively. 

 
(a) Express the length of the bus measured by Alvin, Yiu Yung and Doraemon respectively. 

Label the length as La, Ly and Ld respectively. 

 
(b) Suppose θ =  90o, what would be the value of Ld? Explain your answer briefly. 

 



 
  
(c) Suppose ϕ =  90o, what would be the value of La? Explain your answer briefly. 

 
(d) Suppose ϕ =  0o, what would be the value of Ly? Explain your answer briefly. 

 
(e) Suppose u = 0.5 c, what should be the size of ϕ and θ if : 

(i) We want the length contraction of La to be the largest? 

(ii) We want the length contraction of Ly to be the largest? 

(iii) We want the length contraction of Ld to be the largest? 

 
(f) Let’s suppose u = 0.5 c, θ = 45o and ϕ = 45o. Define a new quantity 

 
(ΔS)2 = (Δ𝑥)2 + (Δ𝑦)2 + (Δ𝑧)2 − (Δ𝑡)2 

where ∆t, ∆x, ∆y and ∆z are the change in time, change in length along x-axis, y-axis 

and z- axis respectively. Compute the ∆S2 for Dr. Lin’s bus if ∆t = 1 s. 

 

[Question 3] 

An astronaut in a spaceship travels to Proxima Centauri, which is approximately 4.2 ly away 

from the Earth. The speed of the spaceship is 0.70 c ( c = speed of light in vacuum) relative 

to the Earth’s frame. 

 
(a) Draw a picture to show the situation of the problem. 

(b) What is the proper length of the distance between Proxima Centauri and the Earth? 

(c) How far is Proxima Centauri from the Earth, as seen by the astronaut in the spaceship? 

(d) How long does it take for the spaceship to reach Proxima Centauri, as seen by an 

observer on Earth? 

(e) How long does it take for the spaceship to reach Proxima Centauri, as seen by the 

astronaut in the spaceship? 

 

 

 
 
 



 

[Question 4]- [The twins paradox] 

There was once a pair of twins Einstein and Newton. One day, Einstein rode on a 

spaceship and leave Earth at a speed of u (u < c) relative to Earth, and after 5 years later 

Einstein returns to Earth at the same speed u. 

 
 

 

According to Newton, who is on Earth, because “a moving clock runs slower”, Newton 

concluded that Einstein will seem to be younger on his return. 

 
However, in Einstein’s frame of reference, his spaceship was at rest while Newton and the 

Earth is moving away and back to him. Once again, because “a moving clock runs slower”, 

Einstein concluded that Newton will seem to be younger when Einstein return to Earth. 

 
Who is correct? What is wrong with this question? See if you can figure out the 

flaw in this question. (Hint : Think about the postulates of Special Relativity…) 

 
THE END 



Page 38 Page 38 

 

 

 

3.1 - Failure of Galilean Transformation 

Recall in Chapter 2, we have learnt the 2 important postulates of Einstein’s Special Theory, 

 
The 1st Postulate : 

 

The 2nd Postulate : 

 

 

Chapter 3 Lorentz Transformation 

In this section we will show that under the 2 postulates of Special Relativity, the Newtonian 

Galilean Transformation will lead to problem. This will motivate us to introduce a new 

transformation rule - The Lorentz Transformation, in the next section, 

The speed of light is a constant (c) in all inertial observer frames. 

The laws of physics are invariant in all inertial observer frames. 
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Revision : 
Complete the following table : 

From Alvin’s point of view : - Initially position of Yung = (x, y) = ( , ). 

- After time t, the position of Yung = (x, y) = (  , ) 

From Yung’s point of view : - Initially position of Alvin = (x’, y’) = ( , ). 

- After time t, the position of Alvin = (x’, y’) = (  , ) 

 
What will be the position of the rabbit R in Alvin’s frame?    

 

After some time t, the position of the rabbit R will also change by a small amount x. If we 

divide both side of the above equation by t, we will get : 
 

Δx

Δt
=

𝑢Δ𝑡

Δ𝑡
+ Δ𝑥′Δ𝑡 

 

Recall that in Chapter 1, we have learnt that the rate of change of displacement is known as the 
velocity. Therefore, we can write the above equation as : 

vx = 𝑢 + 𝑣𝑥′ 

where vx is the velocity of the rabbit in Alvin’s frame, u is the velocity of Yung in Alvin’s frame, 
and vx′ is the velocity of the rabbit in Yung’s frame. 

Now, if the rabbit is moving at a speed of c (speed of light) in Alvin’s frame, then, 

c =  u +  vx′ 

  and hence 

vx
′ =  c − u 

but it violates Einstein’s postulate that, the speed of light should be invariant in all inertial reference 
frame! 
 

#Note : The speed of light is different in different frame in the above situation!
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That is why the Galilean Transformation rules cannot be used in relativity! 
 

Galilean transformation is only a good approximation for speed much lower than the speed of 
light (non-relativistic), but it will eventually break up when it comes to relativity. 

 
To solve the problem, we will need a need set of transformation rules, which can take into account 
the relativistic effect, and is known as the Lorentz Transformation. You will learn more about it in the 
next section. 
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3.2 - Lorentz Length Transformation 

 

Let us consider the following situation. The S-frame is at rest, while S’-frame is moving along the 
positive-x direction at a speed u. There is a point P in the diagram. 

 
 

 
In general, there are 4-coordinates for every point in the spacetime : [t , x , y , z]. t refers to the 
time-coordinate, while x, y and z refer to the spatial coordinates. 

 

Let’s call the coordinates of point P in the S-frame as P = (t, x, y, z), and that in the S’-frame 
as P’ = (t’, x’, y’, z’). 

 

Note that, x’ is the proper length of an imaginary horizontal rod joining the y’ axis and point P in 
the S’-frame. 

 

The corresponding improper length of that “rod” in the S-frame would be  . 
 

Hence, x can be related to x’ by : 
x = ut +

x′

γ
 
where is the Lorentz factor. 

 

By rearranging the terms, we have :

x′ = γ(x − ut) 

This is the first result of the Lorentz Length transformation. 
 

In this section we will derive the equations of the Lorentz Transformation of Length. 
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Therefore, we get the 2 important length transformation rules under the Lorentz’s transformation. 

x′ =  γ(x −  ut)    and    x =  γ(x′ +  ut′) 
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3.3 - Lorentz Time Transformation 

As we can see from Challenge 3.2, we have the relation between t and t’ (in S-frame and S’ frame) 

as the following : 

t = γ (t′ +
ux′

c2
) 

Similarly, if we make x’ as the subject for the equation x = γ (x′ + ut′), and compare it with the 
equation with x′ = γ (x − ut), we can get another time-tranformation equation : 

  t′ = γ (t −
ux

c2
) 

The above 2 equations are the time-transformation equations under the Lorentz Transformation rules. 

In this section we will derive the equations of the Time Transformation under Lorentz 

Transformation. 
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Key Points 

3.1  Failure of Galilean Transformation 

 

(a) Failure of Galilean Transformation 

The Galilean Transformation rules fail when we try to investigate relativistic motions 

(motions with speed very close to the speed of light). 

This is because it may violate Einstein’s postulate that the speed of light is invariant in 
all inertial reference frames. 

 
To resolve the problem, we have to introduce a new kind of transformation rules named the 
Lorentz Transformation rules. 

 

3.2  Lorentz Length Transformation 
(a) Lorentz Transformation Rules of Length 

 

We can relate the spatial coordinates x and x’ in S frame and S’ frame by the Lorentz 
Transformation equations which are as follow: 

x′ =  γ(x −  ut)    and    x =  γ(x′ +  ut′) 
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3.3  Lorentz Time Transformation 

(a) Lorentz Transformation Rules of Time 

Using the equations of Lorentz Transformation of Length, we can retrieve the 2 equations 
governing the relations between t and t’ as follow: 

                    𝑡 = 𝛾 (𝑡′ +
𝑢𝑥′

𝑐2 )    and    t′ = γ (t −
ux

c2 ) 
 

It is notable that the Lorentz Transformation equations reduce to the usual 
Galilean Transformation rules when u << c (i.e. Non-relativistic). 

 

These equations are very useful in our discussion on Relativity. 

 

 

 

 

 

  

 acting on it is zero. 

  

 

 

Key Terms 
Approximation 估算 P.3 Corresponding 對應 P.4 

Einstein 愛因斯坦 P.2 Imaginary 假想 P.4 

Invariant 不相干 P.2 Lorentz Factor 勞倫茲因數 P.4 

Lorentz Transformation  勞倫茲變

換 

P.3 Proper length 在相對於觀察者而

言是靜止的座標系中所量到的長度 

P.4 

Spacetime 時空 P.4 Violate 違反 P.2 
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Multiple Choice Questions 

 

1.  What the proper time pf moving frame 

means? 

 A.  The time measured for moving 

frame by the rest frame 

 B.  The time measured for rest 

frame by the moving frame 

 C.  The time measured for moving 

frame by the moving frame 

 D.  The time measured for rest 

frame by the rest frame 

 

2.  For the length measurement in front of 

the rocket, which is head-on moving 

towards the observer(rest) in speed 
c

2
. 

Which following statement is correct? 

 A.  The length of rocket contracted 

to 1/2. 

 B.  The length of rocket extended 

to 2. 

 C.  The length of rocket extended 

to 1.15. 

 D.  The length doesn’t change. 
 

 

3.  A and B can be observed by each other. 

When A is moving in very high speed, 

e.g close to 
c

2
, B is staying at rest. Which 

following is the best statement? 

 A.  Length contraction and time 

dilation occurs in A and B. 

 B.  Length contraction occurs in A 

while and time dilation occurs 

in B. 

 C.  Length contraction occurs in B 

while and time dilation occurs 

in A. 

 D.  We don’t know as the observer 

is unknow. 

 

4.  What is the improve by using the 

Lorentz transformation instead of using 

Galilean Transformation 

 A.  The observable speed must 

slower than speed of light. 

Except light. 

 B.  The speed of an object will 

change as the observer 

changed. 

 C.  The observable speed is 

different in different observers. 

 D.  All of above are not correct. 
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Short Questions 
 

1. Let us consider a particle moving in the polar coordinate system. 

The trajectory of the particle is given by r = 3, which is a circle of radius 3, centred at the origin. 

In an S’ frame, which is rotating about the origin, the particle moves at an angular speed of 

ω = 1  × 108 rad / s. 

 
(a) Write down the 2 postulates of Einstein’s theory of Special Relativity. 

 
(b) What is the tangential speed of the particle, as seen from the S’ frame? 

 
(c) It is known that the S’ frame completes one cycle of rotation in 10 seconds. The S’ frame is 

also at a radius 3 away from the origin. 

I. Find the angular speed of the S’ frame. 
 

II. Suppose we have another S frame of radius 3 which is at rest. What would be the 

tangential speed of the particle? Use Galilean Transformation in this question. 

 
III. Is your answer in (ii) physically correct? Explain your answer. 

 

IV. What Transformation rules should we use to tackle this problem if we want 

to get physical answer? 
 

V. Complete the summary below: 

Galilean Transformation will fail when we try to deal with motions with speed very 

close to the speed of  . Therefore, we say that Galilean transformation is 

only a good approximation for  - motions. 
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Structured Questions 

 [Question 1] 

Consider 2 inertial reference frames S and S’. S is at rest while S’ is moving at a uniform speed u 

relative to frame S. Suppose there are 2 events, A and B, having spacetime coordinates (t1, x1) and 

(t2, x2) respectively in frame S. A and B happen at the same spatial position in frame S. 

a) Write down the relation between x1 and x2. (Hint : What does it mean by same spatial position?) 

 
b) Find the corresponding time coordinates t1′ and t2′ of event A and B in frame S’ using 

Lorentz Transformation of Time. Hence find the ratio of t1′ : t2′ in terms of t1, t2, u and x1. 

 
c) Suppose that event A and event B happen at the same time as observed from an observer 

in frame S’. What is the ratio of t1′ : t2′ ? Write the the actual   ratio. 

d) Using (c), or otherwise, show that: 

u =
c2(𝑡2 − 𝑡1)

2𝑥
 

e) We define a new quantity, called the spacetime interval, as 

 
Δs2

 
=  − (cΔt)2

 
+  Δx2

 

where Δt and Δx are, respectively, the differences in temporal and spatial separation between  

the 2 events. 

 
 (I) Show that the spacetime interval between event A and B in the S frame is 

Δs2
 
=  − c2(t2  −  t1)2

 
 

(II) Show that the corresponding spatial coordinates of events A and B are 

xA
′ =  γ(x −  ut1)    and    x′B  =  γ(x −  ut2)

Hence show that    

x′B − xA
′ = γu(t1 − t2 ) 
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(III) Show that the spacetime interval between event A and B in the S’ frame is 

Δs′2
 
=  0 

(Hint : You may find it useful to express the Lorentz factor in the form of 

γ =
1

√1 −
u2

c2

 

(IV) What can you conclude about Δs2
 
and Δs′2? 

 

[Question 2] 

 Nowadays, many technologies is applied the effects of the relativity. Can you give out some examples 
that the special relativity is useful in our daily life and explain briefly, in term of what you learnt in 
these chapters, how they works. 

 

[Question 4] 

Complete the steps for the derivation of the (i) Lorentz Transformation of Time and (ii) Lorentz 
Transformation of Length, such that give out the equation:  

 

𝑡 = 𝛾 (𝑡′ +
𝑢𝑥′

𝑐2 )  and   x′ =  γ(x −  ut) 

 
[Question 5]- [The Quidditch Cup] 

 

In the novel series “Harry Potter”, there is a kind of competition called the “Quidditch”. In each 

match, each team has to hit a bludger to the goal in order to score points. Each goal corresponds 

to 10 points. The team which gets 150 points first wins the match. In each team, there is a seeker  
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whose major goal is to catch the golden snitch which is worth 200 points. Once the seeker gets the 

snitch, the match ends immediately with the winning team as that which the seeker belongs to. 

 
In a match, Gryffindor and Slytherin are matching against each other. Near to the end of race, 

Gryffindor gets 50 points while Slytherin gets 140 points. 

 
Now, Malfoy is at rest while Harry Potter is moving horizontally at a speed u relative to Malfoy, 

chasing the snitch. At the same time, one of Malfoy’s teammate hits the bludger and it is flying 

towards the goal. 

 
Define the following events: (A) Harry Potter catches the snitch, and (B) The bludger reaches the 

goal, with the spacetime coordinates (t1′, x1′) and (t2′, x2′) in Harry’s frame. In Harry’s frame, events A 

and B happen at the same time. 

 
a)  What is the relationship between t1′ and t2′? 

 

b) Show that the corresponding time coordinates of the 2 events in Malfoy’s frame are 

𝑡1 = 𝛾 (𝑡1
′ +

𝑢𝑥1
′

𝑐2 )    and    𝑡2 = 𝛾 (𝑡1
′ +

𝑢𝑥2
′

𝑐2 ) 

 

c)  Compute t2 − t2 and express your answer in terms of x1′, x2′ and 

d) If Malfoy wants his team to 

I. Win the match, what should be the relationship between x1′ and x2′? In this case, 

would Harry sees the snitch in front of the goal, above the goal or beyond the 

goal? 

II. Lose the match, what should be the relationship between x1′ and x2′? In this case, 
Would Harry sees the snitch in front of the goal, above the goal or beyond the goal? 

III. Get a draw in the match, what would be the relationship between x1′ and x2′? In 

this case, would Harry sees the snitch in front of the goal, above the goal or 

beyond the goal 

 

THE END 
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Chapter Starters… 

 
In the above comic, Calvin tries to test the theory of relativity using his wagon (四輪車). Try to 

answer the following questions to see if you still remember the special relativistic effect on time 

and lengths you have learnt in Chapter 2. 

(a) In the comic, Calvin tries to increase his wagon’s speed to 30 mph (miles per hour). Given 

that 1 mile is about 1.6 x 103 m. Express 30 mph in terms of meter per second. 

(b) Let’s suppose that Calvin also carries a clock during his drive. State whether there will be any 

difference between Calvin’s clock and Hobbes’s (the tiger) clock. Explain your answer. 

(c) If there is an observer standing on the ground at rest and he carries a clock to measure the 

time used for Calvin to complete the whole journey, whose clock (Hobbes’ clock or the 

stationary observer’s clock) would measure a longer time? 

(d) At the end of the comic, Calvin says that Einstein is a fraud (騙子) because time HAS NOT 

slowed down even though he and Hobbes are going faster. Do you agree? Can you explain 

what is wrong in his experiment? 

Chapter 4 – More about Lorentz Transformation 
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4.1 – Differentiation at a First Glance 

In this section, we will try to illustrate the idea of differentiation. We will also try to show the 

relationship of differentiation with velocity and acceleration. 

 

Recall in Chapter 1, we say that velocity is defined by: 

Velocity =
ΔDisplacement

Δ𝑇𝑖𝑚𝑒
 

where ΔDisplacement and Δ𝑇𝑖𝑚𝑒 are the change in displacement (位移改變) and change in 

time respectively. 

 

Now, consider the following Displacement – Time Graph (位移時間圖) of a moving point object : 

 
If we ask what is the average velocity (平均速度) between point B and C, then the answer would 

just be : 

vavg =
𝑥𝐵 − 𝑥𝐴

𝑡𝐵 − 𝑡𝐴
 

 

But if we ask for the instantaneous velocity (瞬間速度) of the object at point B, what would it be? 

 

The situation (情況) is like we take a photo of a falling water droplet 

(水滴). Obviously (顯然地), we know that the droplet is moving 

downwards with a certain value of speed, but in the photo, it is NOT 

moving, so what would be its instantaneous velocity? Should we say 

that it is instantaneously at rest (瞬間靜止)? 

 

Of course it is NOT! But how can we persuade (說服) ourselves mathematically? 

 

 

 



Page 3  

 

Historical Facts…  

2nd Mathematical Crisis – The “Unmoving Arrow” (二次數學危機 – 飛矢不動) 

Ancient Greek philosopher (哲學家) Zeno of Elea (芝諾) once proposed (提出) a paradox (悖論) 

“The arrow paradox” which is quite related to the 2nd Mathematical Crisis. Here is the paradox : 

One day, Zeno was walking together with his students while he suddenly started a 

conversation with them. 

Zeno : Is a shot arrow (射出的箭) moving or not moving? 

Students : The arrow must be, needless to say, moving. 

Zeno : True, in every people’s eyes, the arrow is moving. However, does the arrow 

have its position in every single instant (每一瞬間)? 

Students : Yes, teacher. 

Zeno : In every of such instant, does the arrow occupy (佔有) the same space (空間) 

and volume (體積)? 

Students : Yes, teacher. 

Zeno : So, in one of these instants, is the arrow moving or not moving? 

Students : Not moving, teacher. 

Zeno : In one instant, the arrow is not moving, so how about the other instants? 

Students : The arrow is also not moving in the other instants. 

Zeno : So, can we conclude (結論) that a shot arrow is not moving? 
 

 

The paradox is, a shot arrow is both moving and not moving! 

This is similar (相似) to that of the photo of a falling water 

droplet. This paradox, fortunately (幸運地), is finally solved 

by introducing the idea of differentiation (微分) by Isaac 

Newton (艾薩．牛頓) and Gottfried Wilhelm Leibniz (哥特佛

萊德．萊布尼茲). 
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We magnify (放大) the original graph around point B. Very near to the point B we define (定義) 

two points B+ and B- : 

 

The slope (斜率) and hence the average velocity between the points B+ and B- will be : 

𝑣𝑎𝑣𝑔̅̅ ̅̅ ̅̅ =
𝑥+ − 𝑥−

𝑡+ − 𝑡−
 

 

If we further magnify the graph and push the two points B+
 and B- closer and closer to the point B, 

we will be able to get the “slope” and thus the instantaneous velocity of the object at point B. 

 

This is the idea of differentiation (微分). To formally illustrate this idea using mathematics, we can 

try the following approach : 

 

Suppose that the displacement s of the object at time t can be described by the function (函數) : 

s = f(t) 

 

The displacement of the object at time t = tB is s = sB = 𝑓(𝑡𝐵).  

 

After a sufficiently short (足夠地短的) time Δt, the displacement of the object becomes  

s = sB+Δt = 𝑓(𝑡𝐵 + Δ𝑡).  

 

Then, the instantaneous velocity of the object at point B will be : 

𝑣𝐵̅̅ ̅ =
𝑓(𝑡𝐵 + Δ𝑡) − 𝑓(𝑡𝐵)

(𝑡𝐵 + Δ𝑡) − 𝑡𝐵
=

𝑓(𝑡𝐵 + Δ𝑡) − 𝑓(𝑡𝐵)

Δ𝑡
 

 

If we force Δ𝑡 to become very close to “0”, we will make the right hand side of the function 

become a limit function (極值函數). [Note : You can learn more about limits in the Limit Chapter.] 
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𝑣𝐵̅̅ ̅ = lim
Δt→0

𝑓(𝑡𝐵 + Δ𝑡) − 𝑓(𝑡𝐵)

Δ𝑡
 

This limit function is actually called differentiation by first principle (從基本原理求導數), and the 

above function can be written as : 

𝑣𝐵̅̅ ̅ = lim
Δt→0

𝑓(𝑡𝐵 + Δ𝑡) − 𝑓(𝑡𝐵)

Δ𝑡
=

𝑑𝑓(𝑡)

𝑑𝑡
 

 

You can learn more about differentiation in the Differentiation Chapter. Here, we will only list 

some of the important rules and results you may find useful in doing exercises. 

 

Mathematical Tools…  

Important Results and manipulation in Differentiation (微分的重要結果及方法) 

 

IMPORTANT RESULTS 

○1  
d

𝑑𝑥
(𝑐) = 0  (c is a constant) 

○2  
d

𝑑𝑥
(𝑥𝑛) = nx𝑛−1  (𝑛 ≥ 1) 

○3  
d

𝑑𝑥
(𝑒𝑥) = 𝑒𝑥  (𝑒 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑎𝑡𝑢𝑟𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟) 

○4  
d

𝑑𝑥
(ln (𝑥)) =

1

𝑥
 (𝑙𝑛 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑎𝑡𝑢𝑟𝑎𝑙 𝑙𝑜𝑔) 

○5  
d

𝑑𝑥
(sin(𝑥)) = cos (𝑥) 

○6  
d

𝑑𝑥
(cos(𝑥)) = −sin (𝑥) 

○7  
d

𝑑𝑥
(tan(𝑥)) = sec2(𝑥) 

○8  
d

𝑑𝑥
(sec(𝑥)) = sec(𝑥) tan (𝑥) 

○9  
d

𝑑𝑥
(csc(𝑥)) = − csc(𝑥) cot (𝑥) 

○10  
d

𝑑𝑥
(cot(𝑥)) = − csc2(𝑥) 
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IMPORTANT MANIPULATIONS 

○1  
d

𝑑𝑥
(𝑓(𝑥) ± 𝑔(𝑥)) =

𝑑

𝑑𝑥
(𝑓(𝑥)) ±

𝑑

𝑑𝑥
(𝑔(𝑥)) 

○2  
d

𝑑𝑥
(𝑐𝑓(𝑥)) = 𝑐

𝑑

𝑑𝑥
(𝑓(𝑥))  (𝑐 𝑖𝑠 𝑎 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡) 

○3  Product Rule : 

d

𝑑𝑥
(𝑓(𝑥)×𝑔(𝑥)) = 𝑓(𝑥)

𝑑

𝑑𝑥
(𝑔(𝑥)) + 𝑔(𝑥)

𝑑

𝑑𝑥
(𝑓(𝑥)) 

○4  Quotient Rule : 

d

𝑑𝑥
(

𝑓(𝑥)

𝑔(𝑥)
) =

𝑔(𝑥)
𝑑

𝑑𝑥
(𝑓(𝑥)) − 𝑓(𝑥)

𝑑
𝑑𝑥

(𝑔(𝑥)) 

𝑔(𝑥)2
 

○5  
Chain Rule : 

d

𝑑𝑥
(𝑓(𝑔(𝑥)) =

𝑑𝑓(𝑔)

𝑑𝑔
×

𝑑𝑔(𝑥)

𝑑𝑥
 

 

 

 

Consider the following displacement-time graph of an object. Its trajectory (軌跡) can be 

described by the function : 

f(t) = −t2 + 4𝑡 

where t is the time of travelling. 

 

(a) What is the average velocity of the object from t = 0 to 4s? 

(b) Show, by first principle, that the instantaneous velocity v(t) of the object at any time t is : 

v(t) = −2𝑡 + 4 

(c) Find the time when the instantaneous velocity of the object is 0. 
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[Solutions] 

(a) What is the average velocity of the object from t = 0 to 4s? 

[Sol] From t = 0 to 4s, the total displacement of the object is 0. Hence, the average velocity 

of the object is also 0. 

 

(b) Show, by first principle, that the instantaneous velocity v(t) of the object at any time t is : 

v(t) = −2𝑡 + 4 

[Sol] By First Principle, we have 

v(t) = lim
Δ𝑡→0

𝑓(𝑡 + Δ𝑡) − 𝑓(𝑡)

Δ𝑡
 

= lim
Δ𝑡→0

[−(𝑡 + Δ𝑡)2 + 4(𝑡 + Δ𝑡)] − (−𝑡2 + 4𝑡)

Δ𝑡
 

= lim
Δ𝑡→0

[−𝑡2 − 2𝑡Δ𝑡 + Δ𝑡2 + 4𝑡 + 4Δ𝑡] + 𝑡2 − 4𝑡

Δ𝑡
  

= lim
Δ𝑡→0

−2𝑡Δ𝑡 + Δ𝑡2 + 4Δ𝑡

Δ𝑡
  

= lim
Δ𝑡→0

(−2𝑡 + Δ𝑡 + 4)  

= −2𝑡 + 0 + 4 

= −2𝑡 + 4  

 

(c) Find the time when the instantaneous velocity of the object is 0. 

[Sol] The instantaneous velocity of the object at any time t is given by : 

v(t) = −2𝑡 + 4 

So we put v(t) = 0 and hence we solve the equation : 

0 = −2𝑡 + 4 

to get t = 2 

 

 
1. Evaluate the following limits : 

(a) lim
h→0

ℎ+𝑥−𝑥

ℎ
 (b) lim

h→0

(ℎ+𝑥)3−𝑥3

ℎ
 (c) lim

h→0

sin (ℎ+𝑥)−sin (𝑥)

ℎ
 

 

2. Consider a moving object with its displacement s(t) described by the function : 

s(t) = t3 − 𝑡 + sin (𝑡) 

where t is the time of travel. 
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(a) Using the results of Question 1, or otherwise, find the function v(t) which describes the 

instantaneous velocity of the object at any time t. 

(b) What is the velocity of the object at time t = 0? 

 

Spare some time and think a bit more… 

 In Question 2, if you differentiate s(t) with respect to time t by 2 times, what would you get? 

 Sketch (繪畫) the graphs of y = sin (x), y = x3 and y = – x. 

 

4.2 – Lorentz Transformation of Velocity 

In this section, we will derive (推導) the equations of Lorentz Transformation of Velocity. 

 

Recall in Chapter 3, that the Lorentz Transformation (羅倫茲變換) of Lengths and Time are given 

by the equations : 

x′ = γ(x − ut) x = γ(x′ + ut′) 

t′ = γ(t −
ux

𝑐2
) t = γ(t′ +

ux′

𝑐2
) 

 

Suppose there is an object moving at velocity v in a rest frame S. What would be its velocity v’ in a 

moving inertial reference frame S’? 

 

The solution is rather simple. In the previous section (Section 4.1), we say that the velocity of an 

object is defined by : 

v = lim
Δ𝑡→0

𝑓(𝑡 + Δ𝑡) − 𝑓(𝑡)

Δ𝑡
=

𝑑

𝑑𝑡
(𝑓(𝑡)) 

  

In the relativistic view, the velocity v’ in the moving frame S’ can be defined as : 

v′ =
ΔDisplacement in S′𝑓𝑟𝑎𝑚𝑒

Δ𝑇𝑖𝑚𝑒 𝑖𝑛 𝑆′𝑓𝑟𝑎𝑚𝑒
=

𝑑𝑥′

𝑑𝑡′
 

 

Now, from the formerly derived Lorentz Transformation of Lengths and Time equations, we have : 

x′ = γ(x − ut) 

dx′ = d[γ(x − ut)] 

dx′ = γ(dx − udt) 

t′ = γ(t −
ux

𝑐2
) 

dt′ = d [γ (t −
ux

𝑐2
)] 

dt′ = γ(dt −
udx

𝑐2
) 
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So at the end we get : 

v′ =
𝑑𝑥′

𝑑𝑡′
=

γ(dx − udt)

γ(dt −
udx
𝑐2 )

=
dx − udt

dt −
udx
𝑐2

=

dx
𝑑𝑡

− u

1 −
u
𝑐2 ×

𝑑𝑥
𝑑𝑡

=
𝑣 − u

1 −
uv
𝑐2

 

 

The above equation is called the Lorentz Transformation of Velocity. 

 

Watch Out…  

Be careful when you read the Lorentz Transformation of Velocity.  

(i) The “v” is the velocity of the object in the rest inertial reference frame S. 

(ii) The “u” is the velocity of the moving inertial frame S’ relative to the rest inertial reference 

frame S.  

(iii) The “v’” is the velocity of the object in the moving inertial frame S’. 

 

 

A point object is moving at a speed of 0.5 c (c is the speed of light) in a rest inertial reference 

frame S. Another frame S’ is moving at a speed of 0.8 c relative to the S frame. 

 

(a) What is the velocity v’ of the object in the S’ frame? Use Lorentz Transformation in this 

question. 

(b) What will be the velocity v’’ of the object if we use Galilean Transformation? 

 

[Solutions] 

(a) What is the velocity v’ of the object in the S’ frame? Use Lorentz Transformation in this 

question. 

[Sol] Using Lorentz Transformation, we have  

v′ =
v − u

1 −
𝑢𝑣
𝑐2

=
0.5c − 0.8c

1 −
(0.5𝑐)(0.8𝑐)

𝑐2

=
−0.3𝑐

0.6
= −𝟎. 𝟓𝒄 

 

(b) What will be the velocity v’’ of the object if we use Galilean Transformation? 

[Sol] Using Galilean Transformation, we have v’’ = 0.5c – 0.8c = – 0.3c 
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2 rockets A and B are travelling in space. According to an observer on the Earth, the velocity of A 

and B are uA = 0.3 c and uB = – 0.7 c respectively. Find the velocity of rocket B with respect to 

rocket A. 
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Key Points 

4.1  Differentiation at a first glance 

 Instantaneous velocity is actually the first derivative of displacement defined by : 

v =
ds

𝑑𝑡
 

 Differentiation is a kind of limit function in which we try to find the “slope” of a point in a 

graph. 

 Because of Einstein’s postulate that the speed of light is invariant in all inertial reference 

frames, we have to use Lorentz Transformation instead of Galilean Transformation to find 

velocity of objects in different reference frames. 

4.2  Lorentz Transformation of Velocity 

 The velocity v’ of an object in a moving reference frame is defined by : 

v′ =
v − u

1 −
𝑢𝑣
𝑐2

 

 

 

Key Terms 

Average velocity 平均速度 P.2 Define 定義 P.4 

Derive 推導 P.8 Differentiation 微分 P.3 

Displacement 位移 P.2 Differentiation by First Principle  

從基本原理求導數 

P.5 

Displacement-Time Graph  

位移時間圖 

P.2 Function 函數 P.4 

Instantaneously at rest 瞬間靜止 P.2 Instantaneous velocity 瞬間速度 P.2 

Instant 瞬間 P.3 Limit function 極值函數 P.4 

Lorentz Transformation 羅倫茲變換 P.8 Magnify 放大 P.4 

Paradox 悖論 P.3 Philosopher 哲學家 P.3 

Propose 提出 P.3 Sketch 繪畫 P.8 

Slope 斜率 P.4 Sufficiently 足夠地 P.4 

Trajectory 軌跡 P.6 Zeno of Elea 芝諾 P.3 
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Check Your Concepts 

1. Why do we need differentiation? How is it related to the speed of a moving object in a static 

photo? [Section 4.1] 

 

2. Can you find the first derivatives of sin (x), cos (x) and tan (x) from differentiation by first 

principle? [Section 4.1] 

 

3. What are the TWO equations of Lorentz Transformation of velocity? [Section 4.2] 

 

 

Historical Profile 

Hendrik Lorentz was a Dutch physicist who shared the 1902 Nobel Prize in Physics with Pieter 

Zeeman for the discovery and theoretical explanation of the Zeeman effect. He also derived the 

transformation equations which formed the basis of the special relativity theory of Albert 

Einstein. 
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Multiple Choice Questions 

 

1.  The following shows a speedometer (速

率計) of a car. What is the 

instantaneous velocity of the car? 

 

 A.  44 m/s 

 B.  47 m/s 

 C.  61 m/s 

 D.  Not enough information is given 

to deduce the answer. 

 

2.  A student shoots an arrow using his 

bow while another student takes 

several pictures of the arrow before it 

falls to the ground. Which of the 

following is/are correct? 

 

(1) The velocity of the arrow is zero at 

every instant throughout its flight. 

(2) If we know the function describing 

the trajectory of the arrow, we can 

find its instantaneous velocity. 

(3) The average velocity of the arrow 

throughout its flight is given by : 

v =
Total Displacement

𝑇𝑜𝑡𝑎𝑙 𝑇𝑖𝑚𝑒 𝑜𝑓 𝐹𝑙𝑖𝑔ℎ𝑡
 

 

 A.  (2) only 

 B.  (3) only 

 C.  (1) and (2) only 

 D.  (2) and (3) only 

 

3.  Which of the following shows the 

correct forms of finding the derivative of 

the function f(x) = x3 + sin (x) by first 

principle? 

 A.  
lim
ℎ→0

[(𝑥)3 + sin(𝑥)] − [(𝑥 + ℎ)3 + sin(𝑥 + ℎ)]

ℎ
 

 B.  
lim
ℎ→0

(𝑥 + ℎ)3 + sin(𝑥 + ℎ)

ℎ
 

 C.  
lim
ℎ→0

[(𝑥 + ℎ)3 + sin(𝑥 + ℎ)] − [𝑥3 + sin(𝑥)]

ℎ
 

 D.  
lim
ℎ→0

𝑥3 + sin(𝑥)

ℎ
 

 

4.  Find the first derivative of  

f(x) = −x
3
2 + 2𝑥 − tan(

4

3
𝑥) 

 A.  
−

3

2
𝑥

3
2 + 2𝑥 −

4

3
sec2(

4

3
𝑥) 

 B.  
−

3

2
𝑥

1
2 + 2 −

4

3
sec2(

4

3
𝑥) 

 C.  
𝑥

1
2 + 2 − sec2(

4

3
𝑥) 

 D.  
−

3

2
𝑥

1
2 + 2 − sec2(

4

3
𝑥) 
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Short Questions 

1.  Derive the inverse Lorentz Transformation of velocity using similar steps in Section 4.2, i.e. 

show that  

v =
v′ + u

1 +
𝑢𝑣′
𝑐2

 

where v’ is the speed of the object in the moving reference frame, and u is the speed of 

the moving reference frame. 

 

2.  An observer A is at rest. Another observer B is moving relative to A at a speed of 0.5 c. 

Now, B throws a ball forward at a speed of 0.5 c relative to himself. Find the speed of the 

ball relative to A using Lorentz transformation equations. 

 

Structured Questions 

[Question 1] (Difficulty : ⋆ ) 

Let’s consider a rather interesting question. Suppose we have 2 photons (light particle) travelling 

towards each other. Each of them has a speed of c. 

 

(a) Using Galilean Transformation, what would be the velocity of photon B as seen by photon A? 

(b) Show that the velocity of photon B as seen by photon A would be equal to c if we use Lorentz 

Transformation. 

(c) Which postulate of Einstein’s theory of special relativity will Galilean Transformation violate, as 

shown by the calculations above? 

 

[Question 2] (Difficulty : ⋆ ⋆ ) 

There is a kind of particle named Muon with a mean lifetime of 2 x 10-6 s (as measured from the 

frame of reference of muon). If we neglect the effect of time dilation, even if it moves at the 

speed of light (i.e. 3 x 108 m/s), it can at most travel a distance of 600 m.  

 

However, research shows that muons produced at a height of 10 km = 104 m above the ground 

can reach the ground at the end. This suggest that muons must be travelling at a very high speed 

which leads to the time dilation effect in Special Relativity. 
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(a)  In this question we consider the muon’s motion from the point of view of an inertial rest 

observer on the Earth. 

(i) If the speed of the muon is u m/s, what would be the lifetime t of muon as 

measured from the observer on Earth? Express your answer in terms of u. 

 

(ii) What would be the maximum distance travelled by the muon, as measured by the 

observer on Earth, according your answer in (i)? 

 

(iii) Using (ii), set up an equation to estimate the minimum speed of the muon if it is to 

be observed to travel at distance of 10 km before it disappears. 

 

(b)  In question (a) we describe the motion of muon from the point of view of an inertial rest 

observer on Earth. Now, let’s consider the motion from the point of view of the muon 

(that is, an inertial reference frame which moves together with the muon). From that 

point of view, the muon particle is at rest while the Earth is moving towards it. 

 

In this case, the muon’s lifetime is 2 x 10-6 s in its frame, and there is no time dilation 

effect in its frame, so how can we explain why it can still reach the ground from a starting 

position of 10 km above the ground? 

 

[Question 3] (Difficulty : ⋆ ⋆ ⋆ ) 

Let us consider a particle moving in the polar coordinate system. 

 
The trajectory of the particle is given by r = 3, which is a circle of radius 3, centred at the origin. 

In Cartesian coordinates, we can express the position of the particle by: 

{
𝑥 = 3 cos 𝜃
𝑦 = 3 sin 𝜃

 

where t is the time of travel. 
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(a) Show that the distance of any points on the trajectory described by the equations above from 

the origin is 3. This is the radius of the circular trajectory. 

 

(b) Find the velocity of the particle along the (i) x-direction, and (ii) y-direction, by differentiation 

using First Principle. 

 

(c) When does the particle has 0 velocity along the (i) x-direction, and (ii) y-direction? 

 

(d) Sketch 2 curves to show the velocity of the particle along the x and y direction with respect to 

time t. 

 

[Question 4] (Difficulty : ⋆ ⋆ ⋆ ) 

Note : This question requires basic knowledge about Matrix. 

The usual Lorentz Transformation equations can be written in Matrix form. (You can learn more 

about matrix in the extension chapter Matrix) as : 

(𝑡′
𝑥′

) = ( 𝛾 −
𝛾𝑢

𝑐
−𝛾𝑢 𝛾

) (
𝑡
𝑥

) 

(a) By simplifying the right hand side of the above matrix equation, show that we can obtain the 

usual Lorentz transformation equations : 

x′ = γ(x − ut) and t′ = γ(t −
ux

𝑐2
) 

 

(b) Evaluate the determinant of the matrix : 

( 𝛾 −
𝛾𝑢

𝑐
−𝛾𝑢 𝛾

) 

Need a helping hand? 

To evaluate the determinant of a 2x2 matrix like : 

(
𝐴 𝐵
𝐶 𝐷

) 

We first write : 

|
𝐴 𝐵
𝐶 𝐷

| 

And the evaluation is just : AB – CD. 
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(c) Using your answer in (b), and the above matrix equation, find the inverse Lorentz 

transformation equation in matrix form. Verify your answer by simplifying the right hand side of 

your solution. 

Need a helping hand? 

○1  For a matrix M defined by 

𝑀 = (
𝐴 𝐵
𝐶 𝐷

) 

If we can find an inverse M-1, then we have : 

𝑀𝑀−1 = 𝐼 = (
1 0
0 1

) 

 

○2  For a 2x2 matrix M defined by 

𝑀 = (
𝐴 𝐵
𝐶 𝐷

) 

If the determinant of M = K ≠ 0, then the inverse M-1 is defined by : 

𝑀−1 =
1

𝐾
(

𝐷 −𝐵
−𝐶 𝐴

) 

 

(d) Show that when c → ∞ (i.e. another way to say that u is much smaller than c), the above 

Lorentz Transformation matrix equations reduce to the usual Galilean Transformation matrix 

equations :  

(𝑡′
𝑥′

) = (
1 0

−𝑢 𝛾
) (

𝑡
𝑥

) 
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[Question 5] (Difficulty : ⋆ ⋆ ⋆ ⋆) 

In the manga series “Assassination Classroom” (暗殺教室), a yellow monstrous-like teacher “Koro-

sensei” (殺老師) can move at a speed of 20 Mach (i.e. 20 times the speed of sound). One day, 

Koro-sensei wants to go to Hawaii to watch a newly-released film “Sonic Ninja”. He flies to there 

at a speed of 20 Mach. One of his student, Shiota Nagisa (潮田渚) observes his flight on the 

ground. During his flight, Koro-sensei sees another monstrous-like man “The reaper” (死神) flying 

pass him. From Koro-sensei’s point of view, the reaper is travelling at a speed of 20 Mach.  

 

 
 

(a)  (i) Given that the speed of sound is about 340 m/s. Express 20 Mach in unit of m/s. 

 

(ii) From your answer in (i), 20 Mach is indeed much smaller than the speed of light, 

and thus we can use Galilean Transformation in our calculation. Using Galilean 

Transformation, find the speed of “the reaper” from the point of view of Shiota 

Nagisa. 

 

 

 

 

 

 

 

 

 

 

 

20 Mach 

The reaper 

Koro-sensei 

Shiota Nagisa 

20 Mach 

? 
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(b)  Now, we assume that after receiving certain kinds of treatment, the maximum speed of 

both Koro-sensei and “the reaper” increase dramatically. Now, it is known that  

Koro-sensei is travelling at a speed of 0.2 c (c is the speed of light). From his point of view, 

“the reaper” is travelling at a speed of 0.2 c.  

 
 

Using Lorentz Transformation, find the speed of “the reaper” as observed by Shiota 

Nagisa. 

 

(c)  Indeed, the scientist who invented Koro-sensei has made more koro-sensei(s). Let’s 

denote the 1st koro-sensei as K1. K1 is moving at a speed of 0.9 c relative to Shiota Nagisa. 

From K1’s point of view, another koro-sensei (K2) moves at a speed of 0.9 c relative to him. 

 

 

 

0.2 c 

The reaper 

Koro-sensei 

Shiota Nagisa 

0.2 c 

? 

0.9 c 

K2 

K1 

Shiota Nagisa 

0.9 c 

? 
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(i) Using Lorentz Transformation, find the speed of “K2” as observed by Shiota Nagisa 

and express your answer in fraction. 

 

(ii) Now, K2 saw another Koro-sensei (K3) moving at a speed of 0.9 c relative to him.  

 
Using Lorentz Transformation, find the speed of “K3” as observed by Shiota Nagisa 

and express your answer in fraction. 

 

(iii) Repeat (ii) if there is another koro-sensei (K4) moving at a speed 0.9 c relative to K3 

and express your answer in fraction. 

 

(iv) Your answer in (i), (ii), (iii) are expressed by fractions : 
A

B
c , 

C

D
𝑐 and 

E

F
𝑐 

respectively (c is the speed of light). 

(1) Find a relationship between the numerator and the denominator of these 

fractions. 

 

(2) Find the value of C ÷ A and E ÷ C, round down to the nearest integer. 

 

(v) If there are in fact N koro-sensei(s) (i.e. K1, K2, K3 … KN), find an approximation of the 

speed of KN relative to Shiota Nagisa by using your answer in (iv). 

 

 

 

 

 

0.9 c 

K3 

K2 

Shiota Nagisa 

Your answer in (i) 

? 
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[Question 6] (Difficulty : ⋆ ⋆ ⋆ ⋆ ⋆) 

Note : This question requires basic knowledge about Matrix. 

For simplification, neglect y-coordinate and z-coordinate in the following calculations. 

 

Consider 2 inertial reference frames S and S’ with coordinates (x , t) and (x’, t’) respectively, 

where x and t are spatial and time coordinates respectively. Initially, the origins of S and S’ are at 

the same point.  

 

S’ is moving relative to S along the x-axis at a speed of v. Under Lorentz Transformation, the 

coordinates transformation can be obtained by the equations : 

 

{
𝑥′ = 𝑓(𝑣)(𝑥 − 𝑣𝑡)

𝑡′ = 𝑔(𝑣)(𝑡 − 𝑚(𝑣)𝑥)
 

 

where f(v), g(v) and m(v) are functions of v to be determined later. 

 

(a)  A light signal is emitted at the origin along the positive x-direction in the S-frame.  

(i) Write down an equation connecting x and t which describes the subsequent 

motion of the light signal. 

Need a helping hand? 

○1  “x” is the distance travelled by the light signal. 

○2  “t” is the time of travelling of the light signal. 

○3  What is the speed of the light signal? 

 

(ii) Write down an equation connecting x’ and t’ which describes the subsequent 

motion of the light signal as seen in the S’ frame.  

Need a helping hand? 

○1  Something about the light signal is unchanged (“invariant”) under one of the 

postulates of Special Relativity. What is it? 

 

(iii) Using your results from (i) and (ii) and the given Lorentz Transformation equation to 

obtain an equation connecting f(v), g(v) and m(v). Name this equation as (1) (Don’t 

worry, the final equation is kind of “ugly” =)) 
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(b)  Repeat (a) if another light signal is emitted at the origin along the negative x-direction in 

the S-frame. Name the final equation you obtained as (2) 

Need a helping hand? 

In this case, the light is moving towards the left, so the distance travelled would be 

negative. 
 

 

(c)  (i) By considering performing some manipulations with equations (1) and (2), find m(v) 

in terms of v and c (c is the speed of light). 

Need a helping hand? 

We want to eliminate f(v) and g(v) to get an equation involving only m(v), v and c. 

Observe the similarities between equation (1) and (2). Which manipulation (i.e. 

addition, subtraction, multiplication and division) can help you eliminate f(v) and 

g(v)?  

 

(ii) Hence, or otherwise, show that f(v) = g(v). 

Need a helping hand? 

○1  For the “hence” approach, you have to substitute your answer in (i) into either 

equation (1) or (2) to show the required result. 

 

○2  For the “or otherwise” approach, you have to think of one manipulation upon 

equation (1) and (2) to eliminate m(v). 
 

 

(d)  Using matrix representation, the above Lorentz Transformation equations can be written 

in the form : 

[
𝑥′

t′ ] = 𝑓(𝑣) [
1 −𝑣

−m(v) 1
] [

𝑥
t

] 

[Note : We have proved that f(v) = g(v) in the previous question. Here we use f(v)] 

 

When we consider the inverse Lorentz Transformation, the S frame will be moving at a 

speed of – v as seen from the rest S’ frame.  

 

Because of the symmetry along the vertical line passing through the origin, we have m( – 

v ) = – m(v), together with f( – v ) = f(v) and g( – v ) = g(v).  

 

Hence, the inverse Lorentz Transformation can be represented by : 

[
𝑥
t

] = 𝑓(𝑣) [
1 𝑣

m(v) 1
] [𝑥′

t′] 
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Using the above two matrix equations, find f(v).  

Need a helping hand? 

○1  Substitute the 2nd matrix equation into the right hand side of the 1st matrix equation, 

then simplify the expression to obtain f(v). 

 

○2  Some useful and simple manipulations of matrix : 

(a) [
𝐴 𝐵
C D

] f(x) [
𝐸 𝐹
G H

] = f(x) [
𝐴 𝐵
C D

] [
𝐸 𝐹
G H

] 

(b) [
𝐴 𝐵
C D

] [
𝐸 𝐹
G H

] = [
𝐴𝐸 + 𝐵𝐺 𝐴𝐹 + 𝐵𝐻
CE + DG 𝐶𝐹 + 𝐷𝐻

] 

(c) [
𝐴 𝐵
C D

] [
1 0
0 1

] = [
1 0
0 1

] [
𝐴 𝐵
C D

] = [
𝐴 𝐵
C D

] 

(d) 𝑓(𝑥) [
𝐴 𝐵
C D

] = [
𝐴𝑓(𝑥) 𝐵𝑓(𝑥)

C𝑓(𝑥) D𝑓(𝑥)
] 

(e) [
𝐴 𝐵
C D

] = [
𝐸 𝐹
G H

] if and only if A = E, B = F, C = G and D = H. 
 

 

[Question 7] (Difficulty : ⋆ ⋆ ⋆ ⋆ ⋆) 

In a rest inertial reference frame S, the coordinate system can be represented by (t , x), where t is 

the time coordinate and x is the spatial coordinate.  

 

Another inertial reference frame S’ is moving at a speed v along the positive x-direction. The 

coordinate system can be represented by (t’ , x’). 

 

The usual Lorentz Transformation equations from the S frame to the S’ frame are : 

{
ct′ = γ(ct − βx)

x′ = γ(x − βct)
 

 

where  

β =
v

c
 and γ =

1

√1 − 𝛽2
 

(a)  Using the above equations, find the inverse Lorentz transformation equations. (i.e. find 

the equation for ct and x) 

 

(b)  There is a rod parallel to the x’ axis which is at rest in the S’ frame. The coordinates of the 

left end and right end of the rod in the S’ frame are (t’ , xL’) and (t’ , xR’) respectively. 
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(i) Denote the length of the rod as L0. Express L0 in terms of xL’ and xR’. 

 

(ii) Find the length L of the rod as measured in the S frame in terms ofγ and L0 

Need a helping hand? 

○1  Do you remember the length contraction equation? 

L0 = γL 

 

○2  Who measures the proper length now? The observer in the S frame or the S’ 

frame? 
 

 

(c)  The following shows how Paul attempts to use inverse Lorentz Transformation to find the 

length L of the rod in the S frame : 

Paul’s attempt :  

Using the inverse Lorentz transformation equations, we can find the x-coordinates of the 

2 ends of rod in the S frame. The difference between the x-coordinates will be the 

required length L. 

 

Steps : 

○1  Using the equations, we have 

{
xL = 𝛾(𝑥𝐿

′ + 𝛽𝑐𝑡′)

xR = 𝛾(𝑥𝑅
′ + 𝛽𝑐𝑡′)

 

 

○2  Therefore, we have the required length L as : 

𝐋 = xR − xL = 𝛾(𝑥𝑅
′ − 𝑥𝐿

′ ) = γL0 > L0 

 

○3  From the calculation, we can see that “a moving rod” expands instead of contract 

from a rest inertial observer point of view. 

 

Obviously, we know that a moving rod seems to contract from the point of view of a rest 

inertial observer. What is wrong, then, in Paul’s attempt? 
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(d)  Now, we assumed that we put an ideal synchronized clock which co-move with the S’ 

frame. The clock has a spatial coordinate of x’clock in the S’ frame. 

 

(i) Using the inverse Lorentz Transformation equations, verify the statement : 

A moving clock runs slower. 

 

(ii) Repeat (i) using the Lorentz Transformation equations. 

 

~ The End~ 
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Chapter Starters… 

It will be very boring if we can only use mathematics to deal with problems in Special Relativity. 

Can we draw some kinds of pictures to have some fun? 

 

The question is – Why CAN’T we? Of course we can draw pictures. We will introduce, in this 

chapter, the spacetime diagram to the readers. You can illustrate relativistic ideas and situations 

by making use of the spacetime diagram. 

 

Let’s first review how to make use of a distance-time graph in the following question.  

 
Two friends, Alvin and Yiu Yung, are racing in space travelling in their spaceships. At time t = 0, 

Alvin is at a distance of 4.5 x 1011 m right from the origin (x = 0) and Yung is at the origin. 

 

(a) One astronomical unit (天文單位) [AU] is defined as the average distance between the Sun 

and the Earth. Given that 1 AU = 1.5 x 1011 m. Find how many AU is Alvin away from the 

origin.                                          

(b) Suppose Yiu Yung travels at a speed of 1 AU / day. Write down an equation relating x and t for 

Yiu Yung. (Hint : How far will Yiu Yung travel t days later? What does “x” represent?)  

(c) Suppose Alvin travels at a speed of 0.5 AU / day. Write down an equation relating x and t for 

Alvin. (Hint : How far will Alvin travel t days later? Where is Alvin at t = 0?)  

(d) Sketch the 2 equations of straight lines in (b) and (c) in the graph next page.   

(e) Using the graph, or otherwise, find when Yiu Yung will catch up with Alvin.    

(f) After Yiu Yung catches up with Alvin, he starts to return to his original position (i.e. the origin) 

at a speed of 0.5 AU / day. Find when he will return to his starting position graphically. 
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Graph Paper 

 

 

 

 

 

Distance (AU) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

O 2   4    6    8   10   12 14   16  18   20   22  24   26  28 

Time (Days) 
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5.1 – Introduction to Spacetime Diagram 

In this section, we will introduce spacetime diagram to the readers, explaining its major 

features, including the axes, world line etc. 

 

 

 

You may have already encountered some graphs like “Distance – Time graph” (距離時間圖), 

“Displacement – Time Graph” or so. These graphs describe the (relative) (相對的) position of a 

certain person or object. 

 

In Special Relativity we also have a kind of graph which is similar to the above mentioned graphs, 

which is called the Spacetime diagram (時空圖). 

 

A usual spacetime diagram takes the usual format as that of Cartesian coordinates (直角坐標系), 

that is, it is formed by 2 perpendicular axes, one vertical (垂直的) and one horizontal (水平的). 

 

The horizontal axis refers to the space axis (空間軸)*. It is the spatial position (空間上的位置) of 

events (事件). 

 

(*Note : In general, the position of an event is 3-dimensional (三維的) [i.e. It should have x, y and z 

coordinates in space]. In most of the discussions and problems in this set of notes, we will focus 

on only 1-dimensional cases [i.e. You may regard the space axis as the usual x-axis].) 

 

On the other hand, the vertical axis refers to the time axis (時間軸). We intentionally multiply the 

time axis t by the speed of light c to simplify things. [See “Want to know More?...” if you want to 

know the reason behind this act.] 
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Let’s examine (研究) the above spacetime diagram. 

 

In the above diagram, Alvin is first at rest at x = 0. Then, he moves to the right (positive-x direction) 

and comes to rest. Finally, he walks back to x = 0 at the end. 

 

On the other hand, Yiu Yung moves towards x = 0 at an uniform speed. 

 

There are some features (特點) on a spacetime diagram. We shall examine them one by one. 

 
Suppose Alvin is moving to the right at a uniform speed of 0.5 c. The equation which connects 

Alvin’s x-coordinate and t-coordinate will be : 
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We can plot a straight line (red line) on the spacetime diagram to show the path or trajectory  

(軌跡) of Alvin. We say that the red line is the world line (世界線) of Alvin. 

 

What about the world line of light?  

 

Light is travelling at a speed of c, so the equation for its world line will be : 

 
 

So it will be a straight line (yellow line) making an angle 45o
 with the x-axis. 

 
 

Now, look at the following spacetime diagram. What does the green line represent? What is the 

motion of Yiu Yung? 

 

Answer : The green line represents the world line of Yiu Yung. He is at rest somewhere right to the 

origin. 
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Want to know More?…  

“t” versus “ct”…Wait! Aren’t they of different dimensions?  

(“t” VS “ct”…它們不是不同量綱嗎?) 

 

Good question. The author has also been pondering (思索) on this question. Right, we meant to 

construct a graph similar to that of a distance – time graph, but now ct would be having a length 

dimension [m] instead of a time dimension. So what’s the point of doing this? 

 

The point is, what is the SI unit of time and length? [s] and [m].  

 

Still remember the world line of light :  

x = ct 

If we plot it on a t-x diagram, how would it look like? 

 

It would probably look like the yellow line in the above diagram.  

 

You might ask, what’s the matter of this? Here’s the problem : When would relativistic effect 

become important?  

 

Of course when objects travel at a speed close to the speed of light. Let’s draw the world lines of 

a few of these objects on the above diagram to see what will happen. 
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The lines would be very close to the world line of light. Can you imagine how we are going to 

further do drawings on the diagram?  

 

To help us solve the problem, we intentionally multiply the speed of light c to the time (t) axis to 

make it more convenient (方便) in doing drawings. 

 
 

Although the vertical axis ct now carries a length dimension, you should still somehow interpret 

it as a time. You can convince yourself by saying that each unit length on the ct axis is “the time 

required for light to travel 1 m”.  

 

Another important result which rises from this construction is the calculation of spacetime 

interval (時空區間) which you will learn more in Chapter 6.  

 

In relativity we want some kinds of rule similar to that of Pythagoras theorem. Physicists soon 

found an expression which can be invariant under coordinate transformation, which is the 

spacetime interval: 

 

ΔS2 = −(𝑐𝑡)2 + 𝑥2 + 𝑦2 + 𝑧2 

 

This is similar to the Pythagoras theorem we used to, except 2 differences: 

(1) An additional c is multiplied to the time coordinate. 

(2) The sign in front of the time-coordinate is negative instead of positive. 

 

We will not explain this here in this Chapter. You can find out more in Chapter 6, in which we 

will formally introduce this new concept. 

 

However, you can notice the appearance of ct in the above expression suggests the vertical axis 

in a spacetime diagram to be ct instead of t. 
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Let us now examine another feature of the spacetime diagram. 

 
Again, the red line represents the world line of Alvin. What is the angle 𝛉 between the world line 

of Alvin and the ct-axis? 

 

In fact, we can find the value of the angle 𝛉 by the following equation : 

 

tan 𝜃 =
Δ𝑥

𝑐Δ𝑡
=

1

𝑐
(

𝑑𝑥

𝑑𝑡
) =

𝑢

𝑐
 

 

where u is the speed of Alvin. 

 

Up till now, we believe nothing can be faster than the speed of light c. So the upper limit of u 

would be c. Thus, we have : 

 

tan 𝜃 =
𝑢

𝑐
<

𝑐

𝑐
= 1 

 

and hence we have the angle 𝛉 of any object on the spacetime diagram would be smaller than 

45o. 
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Let’s use a case that we are familiar with (熟悉的) to apply the spacetime diagram. 

 

Recall in Chapter 2, we use the following “light in a moving car” case to derive the time-dilation 

equation?  

 

Background of the case : 

Inside a moving car, there are 2 mirrors.  

 

At time t = 0, a light signal is sent from the bottom mirror to the upper mirror. After being 

reflected from the upper mirror, it returns to the bottom mirror. 

 

When the light signal is first sent, both Doraemon (on the car) and Yiu Yung (on the road at rest) 

both start a timer to count the time of travel of the light signal. 

 

       

 

Now, how should we draw the spacetime diagram for the events (事件)? 

 

Let us denote (定義) : 

Event A : The light signal is emitted (發射) from the bottom mirror. 

Event B : The light signal reaches (到達) the upper mirror. 

Event C : The light signal returns (回到) the bottom mirror. 
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We can hence draw 2 different space-time diagrams from the point of view of Doraemon and Yiu 

Yung. 

 

Spacetime diagram  

as seen from Yiu Yung’s Frame 

Spacetime diagram  

as seen from Doraemon’s Frame 

  

Note : The light pulse has moved to the right as 

seen from Yiu Yung’s frame. 

Note : The light pulse is moving vertically up 

and down as seen from Doraemon’s 

frame. 

 

 

 

Consider the case in Example 2.1 : 

Background of the case : 

At the instant shown, a Doraemon is standing in the middle of a moving bus travelling to the 

right at a speed u. Two of his friends, A and B, are standing at the 2 ends of the bus. Yiu Yung 

is at rest outside the bus. 

At the time t = 0, Doraemon sends 2 light signals to A and B simultaneously. In his point of 

view, A and B will receive the light signals at the same time. But from Yiu Yung’s point of view, 

A will receive the signal first. 

 

(a) Sketch the spacetime diagram from the point of view of the middle Doraemon. 

(b) Sketch the spacetime diagram from the point of view of Yiu Yung. 

(c) What can be a possible conclusion to this case? How is it related to relativity? 
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[Solutions] 

(a) Sketch the spacetime diagram from the point of view of the middle Doraemon. 

[Sol] 

 
 

(b) Sketch the spacetime diagram from the point of view of Yiu Yung. 

[Sol] 

 

 

(c) What can be a possible conclusion to this case? How is it related to relativity? 

[Sol] From the point of view of Doraemon, Event A (light signal reaches A) and event B (light 

signal reaches B) happen at the same time (Simultaneously), but from the point of view of 

Yiu Yung, Event A happens before Event B. 

Conclusion : Simultaneity is NOT an absolute concept in relativity.  

(Or other acceptable answers) 
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Consider the following case : 

 

Doraemon is riding on a bus moving to the right with an uniform speed u. Yiu Yung is at rest 

outside the bus. At time t = 0, Doraemon throws a ball upward. 

 

(a) Draw the spacetime diagram from the point of view of Doraemon. 

(b) Draw the spacetime diagram from the point of view of Yiu Yung. 

(c) Assume that both Doraemon and Yiu Yung have a proper clock to measure the time interval 

between the ball’s motion. State who will measure the proper time. 

(d) This time, Doraemon throws a ball to the right with a speed v, as measured from his frame. 

Find the speed of the ball as seen by Yiu Yung using Lorentz Transformation of velocity. 

 

Spare some time and think a bit more… 

 Is the ball itself a good inertial reference frame? Why? 

 Consider the case in question (d). There is another Doraemon (Say B) at the right end of the 

bus to catch the ball. Compare the time elapsed between event A (Left Doraemon throws 

the ball) and event B (B catches the ball) from Doraemon’s and Yiu Yung’s point of view. 

Which one is longer? Can you explain why? 
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5.2 – Drawing on the Spacetime Diagram 

In this section, we will illustrate (演示) how to draw and use the spacetime diagram. 

 

We now want to plot both S and S’ frame on the same graph. First, we have to find the ct’ and x’ 

axes on the S frame. 

 

Recall the Lorentz Transformation equations in Chapters 3 and 4 : 

Equation 1 Equation 2 

  

 

Equation 3 Equation 4 

  

 

What we are trying to do is to merge (合併) the 2 

spacetime diagrams for S and S’ frame on the graph 

paper. We try to put it in the form such that their origins 

(O and O’) coincide (共點). 

 

To make the 2 origins coincide, we require : 

(a) x’ = 0 when x = 0 

(b) t’ = 0 when t = 0 

 

 

For requirement (a), and together with equation 2, we have :  

Recall that the time dilation equation in Chapter 2 is given by :  

 

From the 2 equations, we have 

 

as the equation for the ct’ axis. 

[Note : x is now measuring the distance of the S’ frame with respect to its own origin.] 
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The slope of the line is given by u. So we have the angle ϕ between the ct axis 

and the ct’ axis given by : 

 

 

 

 

 

 

Similarly, for the x’ axis, 

For requirement (b), and together with equation 4, we have : 
 

Recall that the length contraction equation in Chapter 2  

is given by : 

 

 

From the 2 equations, we have 

 

 

as the equation for the x’ axis. 

 

The angle between the x’ and x axis, α, is given by: 

 

 

 

which is exactly the same as ϕ. We hence define the angle between the S and S’ frame 

neighbouring axes as tan−1 (
𝑢

𝑐
) = tan−1 𝛽. 
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The spacetime diagram below summarizes the above results. 

 

 

As the axis have tilted, the grid lines (格線) will also be tilted : 
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Let’s consider 4 events A, B, C and D in the following spacetime diagram. 

 

 

The yellow lines are called the “lines of simultaneity” (同步線) of the S’ frame. Events lying on this 

line happen simultaneously in the frame S’. Similarly, the red line is the line of simultaneity of 

frame S. 

 

We can easily see that while events A and B happen simultaneously in frame S’, this is NOT the 

case in the S frame; Indeed, event A happens before B in the S frame. 

 

On the other hand, while events C and D happen simultaneously in frame S, this is NOT the case in 

the S’ frame. In fact, event C happens before D in the S’ frame. 

 

This once again prove that 

“Simultaneity” is NOT an absolute concept in relativity. 

 

At the same time, the blue line is a world line (世界線) at x’ = 1 in the S’ frame. This tells us that 

event A and D happen at the same location in the S’ frame, but this is NOT the case in the S frame! 

Actually, event D happens at the right of event A in the S frame. 

 

We will see how we can make use of the spacetime diagram to prove length contraction and time 

dilation in Example 5.2 and Challenge 5.2. 
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Let’s assume in the S-frame (rest frame), there is a rod of proper length L0 at rest. Denote the 

left end and right end’s position as Q and P respectively in the S frame. There is another moving 

S’ frame with a speed u relative to the frame S. The following spacetime diagram illustrate the 

situation. 

 
Prove the length contraction equation using the given materials and information. 

 

[Solutions] 

Let’s denote the coordinates of Q, Q’, P, P’ as 𝐐(𝐱𝟏, 𝟎), 𝑸′(𝒙𝟏
′ , 𝟎), 𝑷(𝒙𝟐, 𝟎) 𝒂𝒏𝒅 𝑷′(𝒙𝟐

′ , 𝟎). 

 

Note that 𝚫𝐱′ = 𝛄(𝚫𝐱 − 𝐮𝚫𝐭). We have: 

 

𝐱𝟐
′ − 𝒙𝟏

′ = 𝛄[(𝐱𝟐 − 𝒙𝟏) − 𝒖(𝟎)] = 𝜸(𝒙𝟐 − 𝒙𝟏) 

𝐋𝟎 = 𝛄𝐋 

𝐋 =
𝐋𝟎

𝜸
 

 

which is the length contraction equation. 
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Let’s assume in the S-frame (rest frame), at the position x and t = 0, there is a clock at rest. 

There is another moving S’ frame with a speed u relative to the frame S. When the time of the 

clock reads tq, the clock intersects with the x’ axis of the S’ frame. The following spacetime 

diagram illustrate the situation. 

 

Derive the time dilation formula using the given materials and information. 
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Key Points 

5.1  Spacetime Diagram 

 There are usually 2 axes in the spacetime diagram : 

- Horizontal axis : Spatial position (x) 

- Vertical axis : Time axis (ct) 

 

 A world line is the trajectory of any person or object on a spacetime diagram. 

 

 The angle θ between the world line of any object and the vertical time axis can be related 

by the equation : 

tanθ =
Δx

𝑐𝛥𝑡
=

𝑢

𝑐
 

where u is the speed of the object. Note that θ is always smaller than 90o. 

5.2  Drawing on the Spacetime Diagram 

 The equation of the ct’ axis is given by : 

x = ut 

 

 The equation of the x’ axis is given by : 

ux = c2𝑡 

 

 The angle between the S and S’ neighbouring axes is given by : 

tan−1 𝛽 = tan−1 (
𝑢

𝑐
) 

 

 A line of simultaneity is a line on the spacetime diagram on which all the events happen at 

the same time in that reference frame. 
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Key Terms 

Astronomical unit  天文單位 P.1 Spacetime diagram  時空圖 P.3 

Cartesian Coordinates  直角坐標系 P.3 Space axis  空間軸 P.3 

Spatial position  空間上的位置 P.3 Event  事件 P.3 

Time axis  時間軸 P.3 World line  世界線 P.5 

Dimension  量綱 P.6 Spacetime interval  時空區間 P.7 

Coincide  共點 P.13 Grid lines  格線 P.15 

Line of simultaneity  同步線 P.16 

 

 

Check Your Concepts 

1. Can you clearly define what a world line is? [Section 5.1] 

 

2. What is the angle between the world lines of an at rest observer and a moving observer? 

[Section 5.1] 

 

3. What is a “line of simultaneity”? [Section 5.2] 

 

 

Historical Profile 

Bernhard Riemann was a German mathematician who made contributions to analysis, number 

theory, and differential geometry. In the field of real analysis, he is mostly known for the first 

rigorous formulation of the integral, the Riemann integral, and his work on Fourier series. 

Through his pioneering contributions to differential geometry, Bernhard Riemann laid the 

foundations of the mathematics of general relativity. 
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Multiple Choice Questions 

1.  Consider the spacetime diagram for an 

inertial reference frame. How will the 

world line look like if it is at rest at some 

position x = a from your point of view? The 

line will be… 

 A.  Oblique 

 B.  Horizontal 

 C.  Vertical 

 D.  Not enough information is given 

to deduce the answer. 

 

2.  Which of the following best shows the 

equation of the world line for light in an 

inertial reference frame? 

 A.  x = t 

 B.  ux = c2t 

 C.  x = ut 

 D.  x = ct 

 

3.  Refer to the following spacetime 

diagram. Alvin is at rest (S frame) while 

Yiu Yung (red line) is moving at a speed 

u away from Alvin.  

 
Determine the value of Yiu Yung’s 

speed u using the information given. 
 

 

 A.  0.5c 

 B.  √3

3
c 

 C.  2c 

 D.  Not enough information 

 

Question 4 – 5 refer to the following. 

Event A and B lie on the same horizontal line in 

a spacetime diagram of an at rest observer. 

 

4.  What is the name given to the 

horizontal line mentioned? 

 A.  World line. 

 B.  Time line. 

 C.  Line of simultaneity. 

 D.  Yellow line. 

 

5.  Assumes that the observers live in a 1D 

world (they can only move left or right). 

If another observer C sees event A 

happens before event B, and given that 

event A’s position is on the left of event 

B in the rest observer’s point of view. 

To which direction is C moving 

towards? 

 A.  To the left of the rest observer. 

 B.  To the right of the rest observer. 

 C.  C is also at rest. 

 D.  C first moves to the left, then 

back to the right again. 
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Short Questions 

1.  By making use of a spacetime diagram, show that observers moving relative to each other 

can have different opinions on the simultaneity of two events A and B. 

 

2.  Show explicitly that the world line in a spacetime diagram is described by the equation 

x = ct. You should list out all the mathematical steps required to achieve the result.  

 

Structured Questions 

[Question 1] (Difficulty : ⋆ ) 

We have been dealing with 1D problems only so far in this chapter (i.e. We only consider the x-

direction as the only spatial coordinates). Let us consider one more spatial coordinates such that 

the spacetime coordinates of each event is (t, x, y). 

 

Let’s consider a man standing at (x, y) = (0,0). At time t = 0, he throws a ball upward towards 

the positive y-direction. Assume gravity acts along the negative y-direction. 

 

(a) Sketch, on the x-y plane below, the trajectory of the ball when the ball is thrown. 

 
 

(b) Sketch, on the y-t plane below, the trajectory of the ball when the ball is thrown. 
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(c) Sketch, on the x-y-t system below, the trajectory of the ball when the ball is thrown. 

 

 

(d) Sketch, on the y-t plane below, the trajectory of the ball if there is NO GRAVITY. 

 

 

[Question 2] (Difficulty : ⋆ ⋆ ) 

Consider the case below. 

Background of the case : 

Inside a moving car, there are 2 mirrors.  

 

At time t = 0, a light signal is sent from the bottom mirror to the upper mirror. After being 

reflected from the upper mirror, it returns to the bottom mirror. 

 

When the light signal is first sent, both Doraemon (on the car) and Yiu Yung (on the road at rest) 

both start a timer to count the time of travel of the light signal. 
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(a) Sketch a spacetime diagram showing both the S-frame (Yiu-Yung’s frame) and the S’-frame 

(Doraemon’s frame).  

Denote : 

 Event A = Light emitted from the base. 

 Event B = Light returned to the base. 

 

Let the coordinates of A’ = A′(0,0) and B’ = B′(0, t2
′ ) in the S’ frame. 

 

(b) Prove the time dilation equation using the information above. 

 

(c) Prove the length contraction equation using the information above. 

 

(d) If, after event B, the car suddenly move backward with speed u and a light pulse is emitted 

from the base again immediately. Ignore the acceleration involved in this process. Denote 

Event C = 2nd Light pulse emitted from the base, and Event D = 2nd light pulse returned to the 

base. Sketch the new situation on the same spacetime diagram in (a). 

 

[Question 3] (Difficulty : ⋆ ⋆ ⋆ ) 

In a Japanese cartoon series “Crayon Shin-chan” (蠟筆小新), 

the main character Shin-chan (小新) has a pet dog named 

Shiro (小白). One day, Shin-chan plays a game with Shiro. He 

stands at rest at a position together with Shiro. At time t = 0, 

he sends a light signal to the right and Shiro immediately 

follows the signal at a speed of u. (You may assume that u is a 

fraction of c, the speed of light.) 

 

(a) Sketch a spacetime diagram showing the world lines of Shin-

Chan, Shiro and the light signal. 

 

(b) There is a mirror at a distance x = a from Shin-Chan. Use 

dotted line to represent the world line of the mirror in the 

same spacetime diagram in (a). 

 

(c) The light is reflected and returns back to Shin-Chan after hitting the mirror. Label the point R  

as the point when the light is reflected, and T as the point when Shiro catches up with the 

reflected light ray. 
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In fact, there will be an image of Shin-Chan and Shiro behind the mirror during the whole process.  

 

 

(d) Sketch the world line of Shiro image, Shin-Chan image and the light ray image on the same 

spacetime diagram in (c). Denote T’ as the point when Shiro image catches up with the 

reflected image light ray, and R’ as the point when the image light ray is reflected. Hence show 

that R and R’ coincide. 

 

(e) From Shiro’s point of view, what is the speed of Shiro’s image? (Hint : Use Lorentz’s 

transformation.) 

 

(f) From Shiro image’s point of view, what is the speed of Shiro? (Hint : Use Lorentz’s 

transformation.) 

 

(g) Using your spacetime diagram, show that 

(1) From Shin-Chan’s point of view, T and T’ happen simultaneously. 

(2) From Shiro’s point of view, T’ happens before T. 

(3) From Shiro image’s point of view, T happens before T’. 

 

(h) What conclusion can you make from the above results? How is it related to relativity? 
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[Question 4] (Difficulty : ⋆ ⋆ ⋆ ⋆) 

Consider the following spacetime diagram. 

 
 

A and D represents 2 events happening in the rest frame. 

 

(a) Does event A happen before D? Or does D happen before A? 

 

(b) Does A and D happen at the same spatial position in the rest frame? 

 

(c) Suggest a way for another observer K to move such that he will see that A and D happen at the 

same place. Verify your answer by drawing the world line ct’ and the spatial axis x’ of the 

observer, as well as the world line of event A and D in his frame. 

 

(d) Suggest a way for another observer L to move such that he will see that A and D happen at the 

same time. Verify your answer by drawing the world line ct’’ and the spatial axis x’’ of the 

observer, as well as the line of simultaneity for the events A and D in his frame. 

 

(e) If we want to see event D happens before event A, how fast should we move? Use a 

spacetime diagram to help you. (Note : Here you will see the consequences of moving faster 

than the speed of light. Suppose event A marks your birth, and event D marks the 1st day you 

go to school, then in this case you will go to school even before you were born…) 
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[Question 5] (Difficulty : ⋆ ⋆ ⋆ ⋆ ⋆) 

In 2200, the Earth has developed spaceships which can fly at speed very close to the speed of 

light. In a certain year, NASA sends 2 spaceships outward to look for aliens. Spaceship 1 flies 

towards the positive x-direction at a speed of 0.2 c, while Spaceship 2 flies towards the negative x-

direction at a speed of 0.4 c. Assume that t = 0 when the spaceships departs, and assume that 

NASA space station is at rest at x = 0. 

 

(a) Sketch the world lines of the NASA space station, spaceship 1 and 2 on the same spacetime 

diagram. 

 

(b) At t = 2, NASA received a warning from an unknown alien, and it immediately issue a warning 

signal to both spaceship 1 and 2. Sketch the world lines of the light warning signals. 

 

(c) According to your diagram in (b), which spaceship will receive the warning signal first? Where 

is the other spaceship relative to NASA space station when the 1st spaceship receives the 

signal? 

 

(d) When the spaceships receive the signal, they will return to the NASA space station at a speed 

of 0.5 c. Sketch the world line of the spaceship which 1st receive the warning signal. 

 

(e) When the 1st spaceship receives the signal, the other spaceship, unfortunately, relative to the 

NASA space station, is simultaneously captured by the evil alien and it rides the spaceship 

back to the NASA space station. What should be the speed of the captured spaceship such 

that it can return to the NASA space station at the same time as the other spaceship does? 

 

(f) The alien rides the spaceship at the speed in (e). However, unfortunately for the alien but 

fortunately for the Earth, the spaceship exploded half-way along the path it returns to NASA 

space station. Denote the event of the explosion as V. Sketch the world lines of the light 

emitted at the explosion. Will the light signal reaches NASA space station first, or will the other 

spaceship returns first? 

 

(g) The astronaut together with the captured spaceship remains at rest at his position after the 

explosion of the spaceship. After receiving the explosion light signal, NASA immediately sends 

a rescue spaceship travelling at a speed of 0.8 c to save the astronaut. By how much time after 

the explosion will the astronaut be saved? 
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[Question 6] (Difficulty : ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ) 

Misae and trap paradox 

 
In a Japanese cartoon series “Crayon Shin-chan” (蠟筆小新), the main character Shin-chan (小新) 

always describes his mother Misae (美冴) as a “big fat old witch”. After learning special relativity 

today at school, he thinks of a “great idea” to make fun of his mother. 

 

Noticing that his mother’s horizontal proper length is 𝐿0 + 1, Shin-Chan designed a trap of length 

𝐿0. He makes Misae angry such that she chases him at a speed of u (fraction of c) which is fast 

enough, according to the length contraction formula, to contract Misae’s length lower that 𝐿0 

such that she can fit into the trap. 

 

Once Misae enters completely into the trap, Shin-Chan will close both the front and back trap 

door simultaneously to trap Misae inside. From the point of view of Shin-Chan, this is completely 

possible. 

 

However, from the point of view of Misae, it is the “trap” which is moving, and the trap would 

indeed undergo contraction and will be too small to trap her.  

 

What is going on here? Who is right and who is wrong? Can you figure out what is the thing that 

confuse you here?  

 

Try to sketch a spacetime diagram to help you resolve this paradox. You may find part of the 

completed spacetime diagram in the next page useful. 
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~ The End~ 
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Chapter Starters… 

Readers, I understand that you must be a bit angry because you cannot actually do ANY DIRECT 

MEASUREMENTS on spacetime diagrams in the last chapter. In fact I can sense that some of you 

are saying that I have DECEIVED (欺騙) you. I’m sorry, but that what I meant to do to you… 

BAZINGA (Credit to Sheldon Cooper from “The Big Bang Theory”). A good news to you is, in this 

chapter, we will be able to formulate an ACTUALLY APPLICABLE spacetime graph such that we 

can do real measurements on it. Are you happy to know that? I bet you DID. But before so, let us 

give you a short review on COORDINATE GEOMETRY (座標幾何). 

 

In figure A, 2 points P(x1, 𝑦1) 𝑎𝑛𝑑 𝑄(𝑥2, 𝑦2) are shown on the x-y coordinate plane.  

  

Figure A Figure B 

 

(a) Express the distance between P and Q (i.e. PQ), in terms of x1, y1, 𝑥2 𝑎𝑛𝑑 𝑦2. 

(b) In figure B, the x and y axes are rotated (旋轉了) anti-clockwisely (逆時針地) by an angle θ 

such that we get a new coordinate system with axes x’-y’. The coordinates for points P and Q 

are P′(x1
′ , 𝑦1

′ ) and Q′(x2
′ , 𝑦2

′ ) respectively in the new system, and P and Q lie on the x’-axis. 

(i) Express x1
′  and y1

′  in terms of x1 and y1. 

(Hints : 

(1) For x1
′ , consider the triangle on the right : 

(2) For y1
′ , note that P’ lies on the x’ axis.) 

 

(ii) Similarly, express x2
′  and y2

′  in terms of x2 and y2. 

 

This Question continues next page. 

Chapter 6 – More About Spacetime Diagrams 
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(iii) Express the distance between P’ and Q’ (i.e. P’Q’) in terms of x1
′  and 𝑥2

′ . Using your 

answer in (ii), further express your answer in terms of x1, y1, 𝑥2 𝑎𝑛𝑑 𝑦2. 

(Notes : You might be curious that P’Q’ is NOT OBVIOUSLY EQUAL to your answer in (a). 

But you do know that it MUST BE equal. What’s wrong?) 

 

(c) Express tan 𝜃 in terms of 

(i) x1 and y1. 

(ii) x2 and y2 

 

(d) Using (c), show that your answer in (a) can be expressed as 

PQ = (x2 − 𝑥1)√1 + tan2 𝜃 

 

(e) Using (c), show that your answer in (b)(iii) can be expressed as 

P′Q′ = (x2 − 𝑥1)√1 + tan2 𝜃 

 

Notes : You should notice that your answers in (d) and (e) are the same. This shows that the 

LENGTH between 2 points on a coordinate plane is INVARIANT (不變的) under 

coordinate frame TRANSFORMATION (轉換). In the beginning of this Chapter, we will 

focus on figuring out a similar quantity like LENGTH which is also invariant under 

transformation of the spacetime axes. 

 

 

 

 

 

 

 

 

 



Page 3  

 

6.1 – Spacetime Interval 

In this section we will introduce the idea of spacetime interval (as similar to distance between 2 

points in the x-y coordinate plane). 

 

 

 

 

Spacetime interval (時空區間) is like the “distance” between 2 points in a coordinate plane, but in 

the context (背景) of relativity, this “distance” refers to the “Spacetime distance” between 2 

events (事件) in a spacetime diagram. We want this physical quantity (物理量) [i.e. Spacetime 

interval] to be invariant (不變的) [That will not be changed under frame transformation (轉換)] as 

it is like for length between 2 points on the coordinate plane.  

 

We will show you that the expression foe spacetime interval is somehow similar to that of 

Pythagoras Theorem (畢達哥拉斯定理), but with a slight difference. 
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Let’s assume in the S-frame (which is an inertial rest frame), there is a rod of proper length 𝐋𝟎 

at rest. Relative to the S-frame, there is another moving inertial reference frame S’. At t = 0, the 

back end and the front end of the rod is at point Q and P on the x-axis in the S-frame 

respectively. After some time, the front end and the back end of the rod intersects the x’-axis at 

point Q’ and P’ respectively. The following spacetime diagram illustrates the situation. 

 

 
(a) Which TWO events (out of events P, P’, Q, Q’) happen simultaneously in the S-frame? How 

about in the S’-frame? Are your answers the same for both frame? How is this related to an 

important concept in relativity? 

(b) Denote Q′(0, xQ
′ ) and P′(0, xP

′ ) as the coordinates (t’, x’) for Q’ and P’ in the S’ frame. 

Compute the spatial difference Δx′ = 𝑥2
′ − 𝑥1

′  and the time difference cΔt′ = 𝑐(𝑡2
′ − 𝑡1

′ ) 

between events Q’ and P’ in the S’ frame in terms of xQ
′  and xP

′ . 

(c) Denote Q′(tq, xq) and P′(tp, xp) as the coordinates (t, x) for Q’ and P’ (NOT Q and P) in the 

S frame. Compute the spatial difference Δx = 𝑥2 − 𝑥1 and the time difference  

cΔt = 𝑐(𝑡2 − 𝑡1) between events Q’ and P’ in the S frame in terms of xQ
′  and xP

′ .  

(Hint : You need to use Lorentz Transformation.) 

(d) Let’s define a quantity called the “fake” (虛假的) spacetime interval 

ΔS̅2 = (𝑐𝛥𝑡)2 + (𝛥𝑥)2 

Compute ΔS̅2 (in S frame) and ΔS̅′2
 (in S’ frame) for events Q’ and P’. Hence show that 

ΔS̅2 ≠ ΔS̅′2. 

(e) Show that if ΔS2 = −(𝑐𝛥𝑡)2 + (𝛥𝑥)2, then ΔS2 = ΔS′2. 
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[Solutions] 

(a) Which TWO events (out of events P, P’, Q, Q’) happen simultaneously in the S-frame? How 

about in the S’-frame? Are your answers the same for both frame? How is this related to an 

important concept in relativity? 

[Sol]  

In the S-frame : Events P and Q 

In the S’-frame : Events P’ and Q’ 

The answers are NOT the same. This again shows that “Simultaneity is not an absolute idea in 

relativity.) 

 

(b) Denote Q′(0, xQ
′ ) and P′(0, xP

′ ) as the coordinates (t’, x’) for Q’ and P’ in the S’ frame. 

Compute the spatial difference Δx′ = 𝑥2
′ − 𝑥1

′  and the time difference cΔt′ = 𝑐(𝑡2
′ − 𝑡1

′ ) 

between events Q’ and P’ in the S’ frame in terms of xQ
′  and xP

′ . 

[Sol]  

Δx′ = 𝑥𝑃
′ − 𝑥𝑄

′  

𝑐𝛥𝑡′ = 0 

 

(c) Denote Q′(tq, xq) and P′(tp, xp) as the coordinates (t, x) for Q’ and P’ (NOT Q and P) in 

the S frame. Compute the spatial difference Δx = 𝑥2 − 𝑥1 and the time difference  

cΔt = 𝑐(𝑡2 − 𝑡1) between events Q’ and P’ in the S frame in terms of xQ
′  and xP

′ .  

(Hint : You need to use Lorentz Transformation.) 

[Sol]  

Δx = 𝑥𝑝 − 𝑥𝑞 = 𝛾(𝑥𝑃
′ + 𝑢𝑡𝑃

′ ) − 𝛾(𝑥𝑄
′ − 𝑢𝑡𝑄

′ ) = 𝛾(𝑥𝑃
′ + 𝑢(0)) − 𝛾 (𝑥𝑄

′ − 𝑢(0))

= γ(xP
′ − 𝑥𝑄

′ ) 

𝑐𝛥𝑡 = 𝑐(tp − 𝑡𝑞) = 𝑐 [𝛾 (𝑡𝑃
′ +

𝑢𝑥𝑃
′

𝑐2
) − 𝛾 (𝑡𝑄

′ +
𝑢𝑥𝑄

′

𝑐2
)] = 𝑐 [𝛾 (0 +

𝑢𝑥𝑃
′

𝑐2
) − 𝛾 (0 +

𝑢𝑥𝑄
′

𝑐2
)]

=
𝛾𝑢

𝑐
(𝑥𝑃

′ − 𝑥𝑄
′ ) 
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(d) Let’s define a quantity called the “fake” (虛假的) spacetime interval 

ΔS̅2 = (𝑐𝛥𝑡)2 + (𝛥𝑥)2 

Compute ΔS̅2 (in S frame) and ΔS̅′2
 (in S’ frame) for events Q’ and P’. Hence show that 

ΔS̅2 ≠ ΔS̅′2. 

[Sol]  

ΔS̅ = (cΔt)2 + (𝛥𝑥)2 = [
𝛾𝑢

𝑐
(𝑥𝑃

′ − 𝑥𝑄
′ )]

2

+ [γ(xP
′ − 𝑥𝑄

′ )]
2

= 𝛾2(xP
′ − 𝑥𝑄

′ )
2

(1 +
𝑢2

𝑐2
) 

ΔS̅′ = (cΔt′)2 + (𝛥𝑥′)2 = (0)2 + (𝑥𝑃
′ − 𝑥𝑄

′ )
2

= (𝑥𝑃
′ − 𝑥𝑄

′ )
2
 

Obviously, ΔS̅2 ≠ ΔS̅′2. (Notes : Pythagoras Theorem doesn’t seem to work in relativity…) 

 

(e) Show that if ΔS2 = −(𝑐𝛥𝑡)2 + (𝛥𝑥)2, then ΔS2 = ΔS′2. 

[Sol]  

ΔS̅ = −(cΔt)2 + (𝛥𝑥)2 = − [
𝛾𝑢

𝑐
(𝑥𝑃

′ − 𝑥𝑄
′ )]

2

+ [γ(xP
′ − 𝑥𝑄

′ )]
2

= 𝛾2(xP
′ − 𝑥𝑄

′ )
2

(1 −
𝑢2

𝑐2
)

=
𝛾2(xP

′ − 𝑥𝑄
′ )

2

𝛾2
= (xP

′ − 𝑥𝑄
′ )

2
 

ΔS̅′ = −(cΔt′)2 + (𝛥𝑥′)2 = −(0)2 + (𝑥𝑃
′ − 𝑥𝑄

′ )
2

= (𝑥𝑃
′ − 𝑥𝑄

′ )
2
 

Obviously, ΔS̅2 = ΔS̅′2. (Notes : In relativity, Pythagoras Theorem is still the same, only there 

is an additional negative sign in front of the “time difference”.) 
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Let’s assume in the rest inertial reference frame (S-frame), there is a clock at rest at the position 

𝑥 = 𝑥. There is another inertial reference frame (S’-frame) moving at a speed u relative to the 

S-frame. At 𝑡 = 𝑡𝑃, the clock intersects the x’-axis of the S’-frame. The point Q indicates the 

space-time position of the clock when 𝑡 = 𝑡𝑄. The following spacetime diagram illustrates the 

situation. 

 

(a) Event P and Q happen at the same place in the S-frame. How about in the S’-frame? 

(b) Compute the spatial difference Δx = 𝑥2 − 𝑥1 and the time difference cΔt = 𝑐(𝑡2 − 𝑡1) 

between events Q’ and P’ in the S-frame in terms of tp and tQ. 

(c) Denote Q′(tQ
′ , xQ

′ ) and P′(tP
′ , xp

′ ) as the coordinates (t, x) for Q’ and P’ (NOT Q and P) in 

the S’-frame. Compute the spatial difference Δx′ = 𝑥2
′ − 𝑥1

′  and the time difference  

cΔt′ = 𝑐(𝑡2
′ − 𝑡1

′ ) between events Q’ and P’ in the S’-frame in terms of tP and tQ.  

(Hint : You need to use Lorentz Transformation.) 

(d) Let’s define a quantity called the “fake” (虛假的) spacetime interval 

ΔS̅2 = (𝑐𝛥𝑡)2 + (𝛥𝑥)2 

Compute ΔS̅2 (in S-frame) and ΔS̅′2
 (in S’-frame) for events Q’ and P’. Hence show that 

ΔS̅2 ≠ ΔS̅′2. 

(e) Show that if ΔS2 = −(𝑐𝛥𝑡)2 + (𝛥𝑥)2, then ΔS2 = ΔS′2. 
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From Example 6.1 and Challenge 6.1, we can see that spacetime interval (時空區間) ΔS2 is 

defined by 

ΔS2 = −(𝑐𝛥𝑡)2 + 𝛥𝑥2 

This physical quantity (物理量) is invariant (不變的) no matter you are talking about it in a rest 

frame or in a moving reference frame. 

 

6.2 – Proper Time Intervals and Proper Lengths 

In this section, we will show that the proper time intervals and proper lengths are hyperbolas 

(雙曲線) on the spacetime diagram. 

 

Let’s consider 2 events O = O(0, 0) and P = P(tP, 𝑥𝑃) in the rest inertial reference frame  

(S-frame). The spacetime interval between these 2 events in the S-frame will be: 

ΔS2 = −[𝑐(𝑡𝑃 − 𝑡)]2 + (𝑥𝑃 − 0)2 = −(𝑐𝑡𝑃)2 + 𝑥𝑃
2 

 

We define a new parameter (量) T such that: 

ΔS2 = −(𝑐𝑡𝑃)2 + 𝑥𝑃
2 = −(𝑐𝑇)2 

 

Now, we introduce a new moving observer S’ such that he moves at a speed vP given by 

vP
2 = (

𝑥𝑃

𝑡𝑃
)

2

 

 

Up till the present, we still have not successfully found anything which can move faster than the 

speed of light (or if you like, can travel back in time), so it is fair to suggest that 

vP
2 = (

𝑥𝑃

𝑡𝑃
)

2

< 𝑐2 
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Then, in the S’-frame, we will have the spacetime coordinates of O (O’) and P (P’) as O′(0, 0) and 

P′(tP
′ , 0). Note that in this formulation, the S’-frame is actually moving together with an imaginary 

particle moving along OP. 

 

 

 

The spacetime interval between the 2 events O and P’ in the S’-frame will be: 

 

ΔS2 = −[𝑐(𝑡𝑃
′ − 0)]2 + (0 − 0)2 = −(𝑐𝑡𝑃

′ )2 

 

Then, making use of the invariance of spacetime interval, we have 

 

𝛥𝑆2 = 𝛥𝑆′2 

−(𝑐𝑇)2 = −(𝑐𝑡𝑃
′ )2 

𝑇 = 𝑡𝑃
′  

 

This shows that the proper time interval (本徵時間間隔) in the S’-frame agrees with that in the S-

frame (i.e. The 2 proper “times” as measured the clocks in the S-frame and S’-frame are the same) 

as long as 

 

−(𝑐t′)2 = −(cT)2 = −(ct)2 + (𝑥)2 

 

which, if we plot it on the spacetime diagram, are hyperbolas (雙曲線) along the ct axis. 
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Along the hyperbolas, all observers (in ANY FRAME) will agree with the same proper time  

(i.e. t = 1,2,3 …) 

 

 
For example, the proper time measured by the RED, YELLOW and GREEN observers are all T (y-

intercept of the hyperbola) as they move from O to the hyperbola. 
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This is quite the story for the “proper-time hyperbolas”. Now we will move on to talk about proper 

lengths. 

 

Similarly, we consider 2 events: O = (0, 0) and Q = (tQ, xQ) in the S-frame. 

 

 

The spacetime interval between events O and Q in the S-frame will be 

ΔS2 = −(𝑐𝛥𝑡)2 + (𝛥𝑥)2 = −(𝑐𝑡𝑄)
2

+ 𝑥𝑄
2  

 

We define a new parameter (量) D such that: 

ΔS2 = −(𝑐𝑡𝑃)2 + 𝑥𝑃
2 = 𝐷2 

 

Now, we introduce a new moving observer S’ such that he moves at a speed vQ given by 

vQ
2 = (

𝑥𝑄

𝑡𝑄
)

2

 

Up till the present, we still have not successfully found anything which can move faster than the 

speed of light (or if you like, can travel back in time), so it is fair to suggest that 

vQ
2 = (

𝑥𝑄

𝑡𝑄
)

2

< 𝑐2 

With such formulation, we will have both events O′ = (0, 0) and Q′ = (0, 𝑥𝑄
′ ) happen 

simultaneously in the S’-frame. Note that this is because the S’-frame moves at a speed fast 

enough such that O and Q happen simultaneously in his frame. 
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The spacetime interval between the 2 events O and Q’ in the S’-frame will be: 

 

ΔS2 = −[𝑐(0 − 0)]2 + (𝑥𝑄
′ − 0)

2
= 𝑥𝑄

′ 2
 

 

Then, making use of the invariance of spacetime interval, we have 

 

𝛥𝑆2 = 𝛥𝑆′2 

𝐷2 = 𝑥𝑄
′ 2

 

𝐷 = 𝑥𝑄
′  

 

This shows that the proper length interval (本徵長度間隔) in the S’-frame agrees with that in the S-

frame (i.e. The 2 proper “lengths” as measured the observers in the S-frame and S’-frame are the 

same) as long as 

𝑥′2
= D2 = −(ct)2 + (𝑥)2 

which, if we plot it on the spacetime diagram, are hyperbolas (雙曲線) along the x axis. 
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Along the hyperbolas, all observers (in ANY FRAME) will agree with the same proper lengths  

(i.e. x = 1,2,3 …) 

 

For example, the proper lengths measured by the RED, YELLOW and GREEN observers are all L 

(x-intercept of the hyperbola) as they move from O to the hyperbola. 

 

The following diagram shows the usual applicable form of spacetime diagram. 
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Consider the following spacetime diagram. An inertial rest frame (S-frame), a moving inertial 

frame (S’-frame) and 3 events – O(0, 0), P and Q are shown. 

 
 

(a) By considering events 𝐎 and 𝐏 in the diagram, show the time dilation effect WITHOUT 

doing any calculations. 

(b) By considering events 𝐎 and 𝐐 in the diagram, show the length contraction effect 

WITHOUT doing any calculations. 

 

[Solutions] 

(a) By considering events 𝐎 and 𝐏 in the diagram, show the time dilation effect WITHOUT 

doing any calculations. 

[Sol]  

As seen in the figure below, the time coordinate of P in the S-frame is beyond ct = 2, while 

that in the S’-frame is still at ct = 2. This shows that “A moving clock (the proper time 

measured in the S’-frame) moves slower (than that in the S-frame)”, which is the time 

dilation effect. 
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(b) By considering events 𝐎 and 𝐐 in the diagram, show the length contraction effect 

WITHOUT doing any calculations. 

[Sol]  

As seen in the figure below, the space coordinate of P in the S-frame is beyond x = 2, while 

that in the S’-frame is still at x = 2. This shows that “A moving rod (the proper length 

measured in the S’-frame) contracts (compare to that in the S-frame)”, which is the length 

contraction effect. 

 
 

 

 
Consider 2 inertial reference frames, S-frame and S’-frame in standard orientation (i.e. Both 

origins O and O’ coincide at (0, 0)). The S’-frame moves with a velocity 0.6𝑐 along the x-axis 

relative to the S-frame. An event P occurs as 𝑐𝑡 = 10 and 𝑥 = 8 in the S-frame. 

(a) Sketch the following items on a standard hyperbola graph paper. 

(i) The ct’ and x’ axes of the S’-frame. 

(ii) The event P. 

 

(b) Using your graph in (a), determine the time (ct’) and space (x’) coordinates of event P as seen 

from the S’-frame. 

 

(c) Check that your results in (b) agrees with that you obtain by using the Lorentz 

Transformation equations. 
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Key Points 

6.1  Spacetime interval 

 “Spacetime interval” is analogous to “length” in usual Cartesian planes, but it refers to the 

“spacetime-difference between 2 events”, and is defined by: 

𝛥𝑆2 = −(𝑐𝛥𝑡)2 + (𝛥𝑥)2 

which is invariant in all inertial reference frames. 

6.2  Proper Time Intervals and Proper Lengths 

 Proper time intervals in different inertial reference frames agree as long as 

−(𝑐t′)2 = −(cT)2 = −(ct)2 + (𝑥)2 

which are hyperbolas along the ct axis in the spacetime diagram. 

 

 Proper lengths in different inertial reference frames agree as long as 

𝑥′2
= D2 = −(ct)2 + (𝑥)2 

which are hyperbolas along the x axis in the spacetime diagram. 

 

 

 

Key Terms 

Anti-clockwise逆時針地 P.1 Context背景 P.3 

Coordinate geometry座標幾何 P.1 Deceive 欺騙 P.1 

Event 事件 P.3 Fake 虛假的 P.4 

Hyperbola 雙曲線 P.9 Invariant 不變的 P.2 

Invariance 不變性 P.3 Parameter 量 P.8 

Physical quantity 物理量 P.3 Proper time interval 本徵時間間隔 P.9 

Proper length interval 本徵長度間隔 P.12 Pythagoras theorem 畢氏定理 P.3 

Rotate 旋轉 P.1 Spacetime interval 時空區間 P.3 

Transformation 轉換 P.2   
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Check Your Concepts 

1. What does it mean by “spacetime interval”? What properties do it have? [Section 6.1] 

 

2. What is the mathematical expression for spacetime interval? [Section 6.1] 

 

3. What do the hyperbolas along the ct-axis and the x-axis represent in a spacetime diagram? 

[Section 6.2] 

 

 

Historical Profile 

Karl Schwarzschild was a German physicist and astronomer. He was also the father of 

astrophysicist Martin Schwarzschild. He provided the first exact solution to the Einstein field 

equations of general relativity, for the limited case of a single spherical non-rotating mass, 

which he accomplished in 1915, the same year that Einstein first introduced general relativity. 

The Schwarzschild solution, which makes use of Schwarzschild coordinates and the  

Schwarzschild metric, leads to a derivation of the Schwarzschild radius, which is the size of the 

event horizon of a non-rotating black hole. Schwarzschild accomplished this while serving in the  

German army during World War I. 
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Multiple Choice Questions 

 

1.  
Two events P(

3

c
, 5) and Q(

5

c
, 7) are 

observed in an inertial rest frame S. 

Another inertial frame S’ is moving 

relative to S at a speed of 0.8c. Find 

the spacetime interval Δ𝑆′2
 between 

events P and Q as seen from the  

S’-frame. 

 A.  8 

 B.  −8 

 C.  0 

 D.  Not enough information is given 

to deduce the answer. 

 

2.  Which of the following(s) about 

“spacetime interval” is correct? 

 

(1) It is the same in all inertial reference 

frames. 

(2) It describes the space-time 

difference between events in space-

time. 

(3) It is path-independent. (i.e. It is the 

same no matter if we evaluate it 

along a straight path or a curved 

path) 

 A.  (2) only 

 B.  (3) only 

 C.  (1) and (2) only 

 D.  (2) and (3) only 

 

 
 

3.  How do we call the lines described by 

the equation 

x′2
= −(𝑐𝑡)2 + 𝑥2 

where ct and x are the usual time and 

space coordinate, and x’ is the space 

coordinate in another inertial reference 

frame? 

 A.  Parabolas 

 B.  Circles 

 C.  Cycloids 

 D.  Hyperbolas 

 

4.  If 2 events have the same spacetime 

interval, which of the following must be 

correct? 

 A.  There is always a frame for 

which the 2 events happen 

simultaneously.  

 B.  There is always a frame for 

which the 2 events happen at 

the same place. 

 C.  The 2 events are actually the 

same. This is analogous to the 

Uniqueness Theorem. 

 D.  None of the above. 
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Short Questions 

1.  Consider the following spacetime diagram. 

 

(a) Compute 

(i) ΔS𝐴𝐶
2  (spacetime interval between A and C) 

(ii) ΔS𝐶𝐵
2  (spacetime interval between C and B) 

(iii) ΔS𝐴𝐵
2  (spacetime interval between A and B) 

 

(b) What is ΔS𝐴𝐶
2 + ΔS𝐶𝐵

2 ? Compare your answer with that in (a)(iii). 

(c) Does your answer in (b) implies that spacetime intervals are path-independent? If yes, 

explain briefly. If no, can you try to suggest a counter-example? 
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Structured Questions 

[Question 1] (Difficulty : ⋆ ⋆ ) 

We have verified that spacetime interval can be described by the equation: 

ΔS2 = −(cΔt)2 + (𝛥𝑥)2 

in Example 6.1 and Challenge 6.1 using 2 relatively simple approach. Now, we want to use a 

different approach to verify the result. 

 

Consider the case below. A Doraemon is standing in the middle of a bus moving at a speed u to 

the right relative to the ground. Two of his friends, A and B, are at the left and right of the bus. Yiu 

Yung is standing outside the bus. At t = 0, Doraemon and Yiu Yung align in the same line in space.  

 
 

(a) Sketch a spacetime diagram, showing the world lines of Doraemon, A, B and Yiu Yung. Take Yiu 

Yung’s frame to be the S-frame (the rest inertial frame) and that of Doraemon to be the S’-

frame. You may assume that the origin of the S-frame and S’-frame coincide. 

 

(b) At t = 0, Doraemon sends 2 light signals simultaneously to A and B. Sketch the world lines of 

the 2 light signals on the same spacetime diagram. Mark the point at when the light signals 

reach A and B as events M and N respectively. 

 

(c) Let the spacetime coordinates of event M and N be M(t1
′ , 𝑥1

′ ) and N(t2
′ , 𝑥2

′ ) as in the S’-

frame. What is the relationship between t1
′  and t2

′ ? 

 

(d) Compute the spacetime interval between M and N in the S’-frame. 

 

(e) Repeat (d) for the S frame. Hence show that spacetime interval is invariant in all inertial 

reference frame. 
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[Question 2] (Difficulty : ⋆ ⋆ ⋆ ) 

In relativity, there is a theory claiming (and it is actually quite plausible) that there exists another 

universe which is almost disconnected from ours. We can illustrate it on a spacetime diagram. 

 
 

The right hand side of the graph represents the usual universe we live in, while the left hand side 

represents the other parallel universe. The blue regions represents 2 important and yet up till 

today remaining-mysterious astronomical objects, the black-hole (upper) and white-hole (lower). 

They are undefined regions in which no one knows what is happening inside. 

 

(a) Suppose you are standing at rest at x = 1. Sketch your world line on the diagram. Note that 

you SHOULD NOT extend your world line into the undefined regions. 

 

(b) Suppose in the parallel universe, another you is also at rest at x = −1. Sketch his / her world 

line on the diagram. Note that you SHOULD NOT extend his / her world line into the undefined 

region. 
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(c) Suppose at t = 0, you emit a light signal to your “clone” in the parallel universe. Sketch the 

world line of the signal. (EXTEND the world line to the undefined region using dotted line.) 

Ignore the undefined region, can the signal ever reach your clone? 

 

(d) Suppose at t = 0, your clone emit a light signal to you from the parallel universe. Sketch the 

world line of the signal. (EXTEND the world line to the undefined region using dotted line.) 

Ignore the undefined region, can the signal ever reach your clone? 

 

(e) In case both you and your clone fall into the undefined region, can you and your clone receive 

the signals? Show your answer graphically. 

 

[Question 3] (Difficulty : ⋆ ⋆ ⋆ ⋆ ) 

Refer to the spacetime diagram below. In a rest inertial frame S, there are 2 events P and Q.  

 

 

(a) In the S-frame, which event, P or Q, happens first? 

 

(b) Suppose time is reversible (可逆的). A man tries to travel back in time. 

(i) If the man wants to see that the events P and Q happen in an reverse order compare to 

that in the S-frame. Suggest and sketch an appropriate pair of x′ and ct′ axes on the 

spacetime diagram for the man. 
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(ii) If we reflect P and Q along the x-axis, we will get 2 more events P’ and Q’. In what order 

will P’ and Q’ happen in the time-traveller’s frame you suggested in (b)(i)? How about 

the S-frame? 

 

[Question 4] (Difficulty : ⋆ ⋆ ⋆ ⋆ ⋆ ) 

Note : This question requires basic knowledge about cylindrical and spherical coordinates. 

 

We have only been dealing with 1-D problems by now so far. In general, the spacetime interval in 

3-D Cartesian coordinates can be described by: 

 

ΔS2 = −(𝑐𝛥𝑡)2 + (𝛥𝑥)2 + (𝛥𝑦)2 + (𝛥𝑧)2 

 

We now want to express the 3-D spacetime interval using cylindrical coordinates and spherical 

coordinates. 

 

(a) Using the fact that in cylindrical coordinates, 

{
𝑥 = 𝑟𝑐𝑜𝑠(𝜃)
𝑦 = 𝑟𝑠𝑖𝑛(𝜃)

𝑧 = 𝑧

 

(i) Show that 

Δx = (Δr)(cos(θ)) − 𝑟(sin(𝜃))𝛥𝜃 

Need a helping hand? 

The Δ here means an infinitesimal change of something. You can regard it as 

differentials. 

 

Suppose we have a function f(x, y) consisting of 2 variables, we have 

df =
∂f

∂x
× 𝑑𝑥 +

∂f

∂y
× 𝑑𝑦 

 

(ii) Show that 

Δy = (Δr)(sin(θ)) + 𝑟(cos(𝜃))𝛥𝜃 

 

(iii) Using (a)(i) and (ii), show that the 3-D spacetime interval expressed in cylindrical 

coordinates is given by: 

ΔS2 = −(𝑐𝛥𝑡)2 + (𝛥𝑟)2 + (𝑟𝛥𝜃)2 + (𝛥𝑧)2 
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(b) Using the fact that in spherical coordinates, 

{

𝑥 = 𝑟𝑠𝑖𝑛(𝜃) cos(𝜙)

𝑦 = 𝑟𝑠𝑖𝑛(𝜃) sin(𝜙)

𝑧 = 𝑟𝑐𝑜𝑠(𝜃)
 

Show that the 3-D spacetime interval expressed in spherical coordinates is given by 

ΔS2 = −(𝑐𝛥𝑡)2 + (𝛥𝑟)2 + (𝑟𝛥𝜃)2 + (𝑟 sin(𝜃) 𝛥𝜙)2 

 

[Question 5] (Difficulty : ⋆ ⋆ ⋆ ⋆ ⋆ ⋆) 

Let’s consider a fixed point (the origin O) in spacetime. If we shoot 2 light rays from point O left 

and right, we will get 2 world lines of light signals as shown: 

 

The red part refers to the region which is future relative to point O. While the yellow part is 

something that happens in the past relative to point O. We say the red part is the future light 

cone, and the yellow part is the past light cone relative to point O. 

 

(a) Consider an event N which is neither in the future light cone and past light cone of point O as 

shown below. Show graphically that event N is never influencing (影響著) point O. Explain your 

answer briefly. 
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(b) What is the equation of the 2 world lines of light signals which passes through the point O in 

terms of ct and x? (Hint : Think about this in Cartesian coordinates – What is the equation of 

straight lines in the x-y plane making an angle 45° with the x-axis and passing through O?) 

 

(c) Let’s consider the future light cone (red part). 

(i) For x < 0, 

(1) Write down an inequality describing the left-red region. 

(2) Show that your answer in (1) can be written as: 

−(ct)2 + 𝑥2 > 0 

(Warning : This is no simple business. The reason is although 2 > −3, but  

(2)2 = 4 ≯ (−3)2 = 9. Think really carefully if you are doing 

mathematical-“legally”) 

 

(ii) For x > 0, 

(1) Write down an inequality describing the right-red region. 

(2) Show that your answer in (1) can be written as: 

−(ct)2 + 𝑥2 > 0 

 

(d) Recall that spacetime interval is given by: 

ΔS2 = −(𝑐𝛥𝑡)2 + (𝛥𝑥)2 

Using your answer in (c), show that 

ΔS2 < 0 

is a critical condition such that events can influence or be influenced by point O. Note that this 

is the same as saying that events must lie in the past or future light cones of O in order to 

influence or to be influence by point O. 

 

(e) Can you guess the condition for events not to influence or to be influenced by O? 

 

[Notes] 

(1) For events which can influence each other, we say that they are timelike-separated, with the 

condition: ΔS2 < 0 

(2) For events which cannot influence each other, we say that they are spacelike-separated, with 

the condition: ΔS2 > 0 

(3) For events which can influence each other only by sending a light signal to each other (this is 

the only method), we say that they are null-separated, with the condition: ΔS2 = 0 

 

~ The End~ 


