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Abstract

The superconformal algebra’s vector field representation of a N = (2, 0) superconformal theory

in 6D found by Pär Arvidsson is reviewed and extended to 10D. It is shown that superconformal

vector fields do not exist in 10D.

1 Introduction

The conformal field theories (CFT) are intensively studied nowadays because of their relation

to string theories. For instance, in quantum gravity, there is a famous conjecture (AdS/CFT

correspondence) that gravity theories in AdS spacetime can be understood by studying CFT on its

boundary which looks like Minkowski spacetime. String theories also include supersymmetry, hence

people like to study superconformal theories.

Superconformal vector fields are representations of some Lie superalgebra A = A0⊕A1 consisting

of infinitesimal automorphisms on a super-Minkowski space that

1. extend the super-Poincaré algebra and

2. when their actions are restricted to ordinary Minkowski space, they reduce to the conformal

algebra.

The Lie superbracket of the Lie superalgebra is written as [·, ·} : A× A → A such that [A,A0} :=

[A,A0] and [A1, A1} := {A1, A1}.

In this paper we discuss some results of a 6D superconformal theory before going into our

discoveries about 10D superconformal algebra.

2 Conventions

2.1 Index notations

Latin letters in superscript or subscript on the σa matrices or space-time coordinates xa denote

the Lorentz space-time indices. In 6D, the Latin letters attached to fermionic coordinates θαc and
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their partial derivatives ∂cα are the so(5) R-symmetry indices. Greek letters denote the Lorentz

spinor indices. Parentheses () and square brackets [ ] on superscript or subscript indices denote

normalized symmetrization and anti-symmetrization over the indices concerned, respectively. For

instance,

A[aBb] :=
1

2
(AaBb − AbBa), B(bCc) :=

1

2
(BbCc +BcCb) (2.1)

The bracket over the indices should not be confused with the commutator bracket, which is not

normalized:

[A,B] := AB −BA (2.2)

The Einstein summation convention was used. For instance, if a ∈ {0, ..., 9}, then

AaBab =
9∑

a=0

AaBab (2.3)

2.2 6D Dirac matrices

Pauli matrices: σ̃0 =

(
1 0

0 1

)
, σ̃1 =

(
0 1

1 0

)
, σ̃2 =

(
0 −i
i 0

)
, σ̃3 =

(
1 0

0 −1

)
.

6D sigma matrices:

(σ0)αβ = iσ̃2 ⊗ σ̃1, (2.4)

(σ1)αβ = iσ̃1 ⊗ σ̃2, (2.5)

(σ2)αβ = σ̃0 ⊗ σ̃2, (2.6)

(σ3)αβ = −iσ̃3 ⊗ σ̃2, (2.7)

(σ4)αβ = −σ̃2 ⊗ σ̃3, (2.8)

(σ5)αβ = iσ̃2 ⊗ σ̃0. (2.9)

(σa)αβ are defined by the Clifford algebra relation:

(σa)αβ(σb)βγ + (σb)αβ(σa)βγ = 2ηabδ γ
α (2.10)

where the Minkowski space-time metric is taken as ηab = DiagonalMatrix(−1, 1, 1, 1, 1, 1).

Relevant composite matrices:

(σab) γ
α :=

1

2

[
(σa)αβ(σb)βγ − (σb)αβ(σa)βγ

]
= (σ[aσb]) γ

α (2.11)

2.3 10D Dirac matrices

We follow the convention used by Gates, Hu, Jiang, and Mak (2019):

(σ0)αβ = σ̃0 ⊗ σ̃0 ⊗ σ̃0 ⊗ σ̃0, (2.12)

(σ1)αβ = σ̃2 ⊗ σ̃2 ⊗ σ̃2 ⊗ σ̃2, (2.13)

(σ2)αβ = σ̃2 ⊗ σ̃2 ⊗ σ̃0 ⊗ σ̃1, (2.14)
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(σ3)αβ = σ̃2 ⊗ σ̃2 ⊗ σ̃0 ⊗ σ̃1, (2.15)

(σ4)αβ = σ̃2 ⊗ σ̃1 ⊗ σ̃2 ⊗ σ̃0, (2.16)

(σ5)αβ = σ̃2 ⊗ σ̃3 ⊗ σ̃2 ⊗ σ̃0, (2.17)

(σ6)αβ = σ̃2 ⊗ σ̃0 ⊗ σ̃1 ⊗ σ̃2, (2.18)

(σ7)αβ = σ̃2 ⊗ σ̃0 ⊗ σ̃3 ⊗ σ̃2, (2.19)

(σ8)αβ = σ̃1 ⊗ σ̃0 ⊗ σ̃0 ⊗ σ̃0, (2.20)

(σ9)αβ = σ̃3 ⊗ σ̃0 ⊗ σ̃0 ⊗ σ̃0 (2.21)

Composite matrices:

(σab) γ
α :=(σ[aσb]) γ

α , (2.22)

(σabc)αγ :=(σbc) β
α (σa)βγ + 2ηa[b(σc])αγ, (2.23)

(σabcd) γ
α :=(σa)αβ(σbcd)βγ − 3ηa[b(σcd]) γ

α , (2.24)

(σabcde)αγ :=(σbcde) β
α (σa)βγ + 4ηa[b(σcde])αγ (2.25)

(2.26)

By the above definitions, we find that the matrices with two lower spinor indices can be classified

into

Symmetric matrices: (σa)αβ = (σa)βα, (σ
abcde)αβ = (σabcde)βα

Anti-symmetric matrices: (σabc)αβ = −(σabc)βα
The matrices with one lower and one upper spinor indices are spanned by the following basis:

δ β
α , (σ

[2]) β
α , (σ

[4]) β
α

3 6D N = (2, 0) superconformal algebra generators

We assume a Minkowski superspace which extends the 6D Minkowski space-time. It has ordinary

5+1 space-time coordinates xa that commutes with other coordinates (xaθα = θαxa, xaxb = xbxa),

and fermionic coordinates that anti-commutes with fermionic coordinates (θαθβ = −θβθα). To-

gether, these coordinates form a real vector space. The range of Lorentz space-time indices is

a = (0, 1, 2, 3, 4, 5), and the range of Lorentz spinor indices is α = (1, 2, 3, 4).

Arvidsson (2006) gave the vector field representations of the conformal subalgebra’s bosonic

generators in a 6D N = (2, 0) superconformal theory:

Pαβ = ∂αβ (3.1)

D = xαβ∂αβ +
1

2
θαa∂

a
α (3.2)

M β
α = 2xβγ∂αγ −

1

2
δ β
α x

γδ∂γδ + θβc ∂
c
α −

1

4
δ β
α θ

γ
c ∂

c
γ (3.3)

Kαβ = −4xαγxβδ∂γδ − θgaΩabθ
[α
b θ

β]
c Ωcdθδd∂γδ + 2θ[αc (2xβ]γ − iθβ]a Ωabθγb )∂cγ (3.4)

where Ωab is the antisymmetric invariant tensor for R-symmetry transformation, and the partial

derivatives are defined by ∂αβx
γδ := δ γ

[α δ
δ
β] and ∂bαθ

β
c := δbcδ

β
α . The spacetime coordinates are
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antisymmetric with respect to the Lorentz spinor indices: xαβ = −xβα. Using the Dirac matrices

in 6D, we can decompose the expressions above into

xαβ = −1

2
(σa)αβxa (3.5)

Pαβ =
1

2
(σa)αβPa (3.6)

D = xa∂a +
1

2
θαa∂

a
α (3.7)

M β
α =

1

2
(σab) β

α Mab (3.8)

Kαβ = −1

2
(σa)αβKa (3.9)

where Pa,Mab, D,Ka are the generators of spacetime translations, Lorentz transformations, dilation,

and the special conformal transformations, respectively. Hence, we get

Pa = ∂a (3.10)

Mab = −1

2
xa∂b +

1

2
xb∂a −

1

4
θβc (σab)

α
β ∂

c
α (3.11)

Ka = x2∂a − 2xax · ∂ +
1

4
(σa)βαθ

α · θγθβ · θδ(σb)γδ∂b − xaθ · ∂

− xbθαc (σab)
γ
α ∂

c
γ + i(σa)βαθ

α
c θ

β · θγ∂cγ (3.12)

The dot products are defined by x · ∂ := xc∂c, θ · ∂ := θαc ∂
c
α, and θα · θβ := θαaΩabθβb . The four

generators satisfy the conformal algebra relations (only the non-commuting ones are shown below):

[Pa,Mbc] = −ηa[bPc] (3.13)

[Ka, D] = −Ka (3.14)

[Pa, D] = Pa (3.15)

[Ka,Mbc] = −ηa[bKc] (3.16)

[Mab,Mcd] = ηc[aMb]d − ηd[aMb]c (3.17)

[Pa, Kb] = −4Mab − 2ηabD (3.18)

The fermionic generators of the superconformal algebra are the supercharge Qc
a and the special

supersymmetry generator Sαc , expressed as

Qa
α = ∂aα −

1

2
iΩacθγc (σb)αγ∂b (3.19)

Sαa = −Ωac((σ
b)αγxb + iθα · θγ)∂cγ + 2iθγaθ

α
c ∂

c
γ +

1

2
ixbθ

γ
a(σdb) α

γ ∂d +
1

2
iθαax · ∂ −

1

2
(σd)γδθ

γ
aθ

δ · θα∂d
(3.20)

These two generators have similar properties: Qa
α and Sαa are the ”square-roots” of Pa and Ka

respectively. To be precise, they satisfy the following defining properties:

{Sαa , S
β
b } = −2iΩabK

αβ (3.21)

{Qa
α, Q

b
β} = −2iΩabPαβ (3.22)

where the R-symmetry invariant tensor satisfies ΩabΩ
bc = δ c

a .
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4 10D superconformal algebra generators

Notice that in 10D we can define Majorana-Weyl spinors with 16 real components, and in the

6D theory the spinors also have 16 degrees of freedom because there are 4 Lorentz spinor indices

and 4 R-symmetry indices. Hence, it is natural to ask the following question: can we extend this

vector field representation of 6D superconformal algebra to 10D?

First, we could try the most straightforward step: simply replace the 4 × 4 σ matrices (defined in

Section 2.2) appearing in the 6D bosonic generators by the 16× 16 σ matrices (defined in Section

2.3). Next, remove the R-symmetry indices and make the following change: θα · θβ 7→ θαθβ. These

new expressions are

Pa = ∂a (4.1)

Mab = −1

2
xa∂b +

1

2
xb∂a −

1

4
θβ(σab)

α
β ∂α (4.2)

D = x · ∂ +
1

2
θ · ∂ (4.3)

Ka = x2∂a − 2xax · ∂ − xaθ · ∂ − xbθα(σab)
γ
α ∂γ (4.4)

It is verified that commutation relations shown in the previous section are still satisfied by these

new vector fields. One should know that the expressions of these vector fields are subject to change

if they are incompatible with the fermionic generators, i.e. if their commutators do not result in

some fixed forms. This issue will be discussed in detail in the next section.

These are probably not all of the bosonic generators in a superconformal algebra in 10D (if such

superalgebra exists). There could be more vector fields arising from the commutation relations

when we consider the fermionic generators, just like the Uab generator in the 6D theory that comes

from

{Qa
α, S

β
b } = iδ β

α (δabD − 4ΩbcU
ac) + 2iδabM

β
α (4.5)

However, before we look for more bosonic generators, we should look for the two essential fermionic

generators in 10D: Qα and Sα. First, consider the supercharge Qα. It is require to satisfy

{Qα, Qβ} = −(σa)αβPa (4.6)

[Qα, D] =
1

2
Qα. (4.7)

Thus, its vector field expression can be easily derived:

Qa = ∂α −
1

2
(σa)αβθ

β∂a. (4.8)

Just as the supercharge Qα is the ”square-root” of the translation Pa, the special supersymmetry

generator Sα is the ”square-root” of the special conformal generator Ka, and it should satisfy (as

suggested by the work of Arvidsson(Arvidsson, 2006))

{Sα, Sβ} = (σa)αβKa (4.9)

[Pa, S
α] = (σa)αβQβ (4.10)

[Sα, D] = −1

2
Sα. (4.11)
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Furthermore, it should satisfy some compatibility conditions with Ka:

[Qα, Ka] = k(σa)αβS
β (4.12)

for some k ∈ C. It appeared that the construction of Sα and Ka form a loop: for each definition of

Sα there is a corresponding set of equations that characterize the compatibility condition between

these two generators. In the next section, the general forms of Ka and Sα that satisfy some of these

conditions are derived.

5 Constraints on the form ofKa and Sα

We start by listing some (but not all) of the commutation relations that we want Ka and Sα to

satisfy:

[Sα, D] = −1

2
Sα (5.1)

[Pa, S
α] = (σa)αβQβ (5.2)

[Ka, D] = −Ka (5.3)

Next, consider two lemmas.

Lemma 1. Suppose [θα1 · · · θαn∂a, D] = −1
2
θα1 · · · θαn∂a, then n = 3

Proof.

[θα1 · · · θαn∂a, D] = [θα1 · · · θαn∂a, x · ∂ +
1

2
θ · ∂] (5.4)

= θα1 · · · θαn(∂ax
b)∂b −

1

2
θµ∂µ(θα1 · · · θαn)∂a (5.5)

=
2− n

2
θα1 · · · θαn∂a (5.6)

= −1

2
θα1 · · · θαn∂a (5.7)

=⇒ n = 3 (5.8)

�X

Lemma 2. Suppose [θα1 · · · θαn∂α, D] = −1
2
θα1 · · · θαn∂α, then n = 2

Proof.

[θα1 · · · θαn∂α, D] = [θα1 · · · θαn∂α,
1

2
θ · ∂] (5.9)

=
1

2
(θα1 · · · θαn(∂αθ

µ)∂µ − θµ∂µ(θα1 · · · θαn)∂α) (5.10)

=
1− n

2
θα1 · · · θαn∂α (5.11)

= −1

2
θα1 · · · θαn∂a (5.12)

=⇒ n = 2 (5.13)

�X
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Proposition 1. The generalized expression of Sα satisfying

[Sα, D] = −1

2
Sα, (5.14)

[Pa, S
α] = (σa)αβQβ (5.15)

is given by

Sα =xa(σa)
αβQβ + k1θ

αθ · ∂ + k2(σ
abc)βγ(σabc)

αδθβθγ∂δ+

k3(σ
abc)βγ(σbc)

α
δ θ

δθβθγ∂a + k4(σbcd)βγ(σ
abcd) α

δ θ
δθβθγ∂a (5.16)

Proof. Simple calculation shows that

[Pa, x
b(σb)

αβQβ] = (σa)
αβQβ. (5.17)

Then we have

[Pa, S
α − xb(σb)αβQβ] = 0, (5.18)

which means that except the first term, Sα is independent of xb. These terms must obey the

constraints given lemma 1 and lemma 2, and the coefficients can contain σ matrices.

Firstly consider ∂α terms. Notice that we only have one free index α. By Lemma 2, there are

two Grassmann coordinates. If the index is on a Grassmann coordinate, then the expression should

be θαX γ
β θ

β∂γ. The only basis with no spacetime index in 10D is identity matrix, so X γ
β = δ γ

β , and

the term is θαθ · ∂. If all indices of Grassmann are dummy, then the terms should be X αδ
βγ θβθγ∂δ.

Since X must be antisymmetric on two lower spinor indices and have no free spacetime index, we

can easily decompose it into X αδ
βγ = (σabc)βγ(σabc)

αδ.

Next, consider ∂a terms. If the free spinor index is on a θ, then it should be (Xa)βγθ
αθβθγ∂a.

Since we don’t have an object with only two antisymmetric spinor indices and one free spacetime

index, the free spinor index can’t be on θ. Thus the terms must be (Xa) α
βγδ θ

δθβθγ∂a. The de-

composition of X is obviously (Xa) α
βγδ = c1(σ

abc)βγ(σbc)
α
δ + c2(σbcd)βγ(σ

abcd) α
δ . The proof is done.

�X
Now consider the constraints on the vector field expression of Ka.

Lemma 3. Suppose that

[xa1 ..xanθα1 ...θαm∂a, D] = −xa1 ..xanθα1 ...θαm∂a, n,m ∈ N (5.19)

then (n,m) ∈ {(0, 4), (1, 2), (2, 0)}.

Proof.

[xa1 ..xanθα1 ...θαm∂a, x · ∂ +
1

2
θ · ∂] = xa1 ..xanθα1 ...θαm(∂ax

b)∂b − xb∂b(xa1 ..xan)θα1 ...θαm∂a

− 1

2
xa1 ..xanθβ∂β(θα1 ...θαm)∂a (5.20)

= (1− n− m

2
)(xa1 ..xanθα1 ...θαm∂a) (5.21)

1− n− m

2
= −1 =⇒ 2n+m = 4 (5.22)

Since n,m are natural numbers, the desired result follows. �X
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Lemma 4. Suppose that

[xa1 ..xanθα1 ...θαm∂β, D] = −xa1 ..xanθα1 ...θαm∂β, n,m ∈ N (5.23)

then (n,m) ∈ {(0, 3), (1, 1)}.

Proof.

[xa1 ..xanθα1 ...θαm∂β, x · ∂ +
1

2
θ · ∂] =

1

2
xa1 ..xanθα1 ...θαm(∂βθ

γ)∂γ − xb∂b(xa1 ..xan)θα1 ...θαm∂β

− 1

2
xa1 ..xanθβ∂β(θα1 ...θαm)∂β (5.24)

=

(
1

2
− n− m

2

)
(xa1 ..xanθα1 ...θαm∂a) (5.25)

1

2
− n− m

2
= −1 =⇒ 2n+m = 3 (5.26)

Since n,m are natural numbers, the desired result follows. �X

Proposition 2. Suppose that [Ka, D] = −Ka, then

Ka = x2∂a − 2xax · ∂ + c1xaθ · ∂ + c2x
bθα(σab)

β
α ∂β + c3θ

αθβθγ(σ[3])αβ(σa[3])
δ
γ ∂δ + c4θ

αθβθγ(σa[2])αβ(σ[2]) δ
γ ∂δ

+ c5xbθ
αθβ(σ bc

a )αβ∂c + c6θ
αθβθγθδ(σ[3])αβ(σ[3])γδ∂a + c7θ

αθβθγθδ(σa[2])αβ(σ[2]b)γδ∂b (5.27)

where c1, ..., c7 ∈ C.

Proof. We begin by acknowledging the fact that the action of D acts linearly on the summands in

Ka. The first two terms of Ka are fixed by the requirement that Ka becomes the ordinary special

conformal generator in ordinary spacetime, and they correspond to the (n,m) = (2, 0) terms in

Lemma 3. These two terms will not be discussed below.

Consider the terms with spacetime derivatives ∂c, and let n be the order of spacetime coordi-

nates and m be the order of Grassmann coordinates. By Lemma 3, we have (n,m) = (1, 2) or

(n,m) = (0, 4). If (n,m) = (1, 2), then the term must contain exactly one σ matrix with two lower

antisymmetric spinor indices, which can only be (σ[3])αβ. The free spacetime index a can be on

the partial derivative, spacetime coordinate, or the σ matrix. In this case, it can only be in the σ

matrix for a nontrivial expression. Thus we have the c5 term. If (n,m) = (0, 4), then we must have

two σ matrices with antisymmetric lower spinor indices:(σ[3])αβ and (σ[3])γδ. If the free spacetime

index is on the partial derivative, then we get the c6 term. Otherwise, we get the c7 term.

Now consider the terms with fermionic derivatives ∂β. By Lemma 4, we have (n,m) = (0, 3) or

(n,m) = (1, 1). If (n,m) = (1, 1), then the spacetime free index is either on the single spacetime

coordinate or on a single (σab)
β
α . They give the c1 and c2 terms. If (n,m) = (0, 3), then the free

spacetime index must lie in a σ matrix. This matrix has either two lower spinor indices or one

lower and one upper spinor index. If it has two lower spinor indices, it must be (σa[2])αβ, and the

two dummy indices will appear again on (σ[2]) δ
γ . Thus we obtain the c4 term. If the free spacetime

index lies in a σ matrix with a lower and an upper spinor index, then it could be (σab)
δ
γ or (σa[3])

δ
γ .

However, if it were (σab)
δ
γ , then the term must also contain a factor of (σb)αβ, which would vanish
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due to its contraction with θαθβθγ that is antisymmetric with respect to αβ indices. Hence, our

only remaining choice gives (σa[3])
δ
γ with (σ[3])αβ, resulting in the c3 term. We have exhausted all

the possible cases. �X

Lemma 5.

θαθβθγ(σa[3])
δ
γ (σ[3])αβ = 0 (5.28)

θαθβθγ(σa[2])αβ(σ[2]) δ
γ = 0 (5.29)

θαθβθγθδ(σ[3])αβ(σ[3])γδ = 0 (5.30)

θαθβθγθδ(σa[2])αβ(σ[2]b)γδ = 0 (5.31)

Proof. The results follow from the equations (A.3),(A.8),(A.9), and (A.12) in the Appendix. The

detailed derivation is left as an exercise for the readers. �X

Corollary 5.1. We can shorten the results of Proposition 1 and Proposition 2 to

Sα = xa(σa)
αβQβ + k1θ

αθ · ∂ + k2(σ
abc)βγ(σabc)

αδθβθγ∂δ (5.32)

Ka = x2∂a − 2xax · ∂ + c1xaθ · ∂ + c2x
bθα(σab)

β
α ∂β + c3xbθ

αθβ(σ bc
a )αβ∂c. (5.33)

Proof. The result is a trivial consequence of Lemma 5. �X
After the expressions of Ka and Sα are simplified, we try to verify the remaining compatibility

condition mentioned at the beginning of this section.

6 Non-existence of Sα

The readers should convince themselves of the following numerical fact:

∃a, b ∈ {0, ..., 9} : (σc)α[β(σabc)γδ] 6= 0 (6.1)

This implies θβθγθδ(σc)αβ(σabc)γδ 6= 0. Then, we are prepared to present the following result.

Theorem 1. Suppose Ka and Sα are given by the expressions in Corollary 5.1. Then ∀k ∈ C :

[Qα, Ka] 6= k(σa)αβS
β.

Proof. Suppose, to the contrary, that ∃k ∈ C : [Qα, Ka] = k(σa)αβS
β. Next, calculate the terms in

[Qα, Ka].

[∂α −
1

2
(σc)αβθ

β∂c, x
2∂a] = −(σc)αβθ

βxc∂a (6.2)

[∂α −
1

2
(σc)αβθ

β∂c,−2xax · ∂] = (σa)αβθ
βx · ∂ + (σc)αβθ

βxa∂c (6.3)

[∂α −
1

2
(σc)αβθ

β∂c, xaθ · ∂] = xa∂α −
1

2
(σa)αβθ

βθ · ∂ +
1

2
xaθ

β(σc)αβ∂c (6.4)

[∂α −
1

2
(σc)αβθ

β∂c, x
bθγ(σab)

δ
γ ∂δ] = xb(σab)

β
α ∂β −

1

2
xbθβ(σ c

ab )αβ∂c −
1

2
xbθβ(σb)αβ∂a +

1

2
θβ(σa)αβx · ∂

− 5

64
θβθγ(σa[2])βγ(σ

[2]) δ
α ∂δ +

1

64
θβθγ(σ[3])βγ(σa[3])

δ
α ∂δ (6.5)
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[∂α −
1

2
(σc)αβθ

β∂c, x
bθγθδ(σ d

ab )γδ∂d] = 2xbθβ(σ c
ab )αβ∂c −

1

2
θβθγθδ(σb)αβ(σ c

ab )γδ∂c (6.6)

Summing them up, we obtain

[Qα, Ka] =
[
c1xaδ

β
α + c2x

b(σab)
β
α

]
∂β −

1

2
c3θ

βθγθδ(σb)αβ(σ c
ab )γδ∂c

+ θβ
[(

1 +
1

2
c2

)(
−xb(σb)αβδ c

a + xc(σa)αβ
)

+

(
1 +

1

2
c1

)
xa(σ

c)αβ +

(
2c3 −

1

2
c2

)
xb(σ c

ab )αβ

]
∂c

+ θβθγ
[
−1

2
c1(σa)αβδ

δ
γ +

1

64
c2(σ

[3])βγ(σa[3])
δ
α −

5

64
c2(σa[2])βγ(σ

[2]) δ
α

]
∂δ. (6.7)

On the other hand, we have

k(σa)αβS
β =k(σa)αβ

[
xb(σb)

βγQγ + k1θ
βθ · ∂ + k2(σ

[3])γε(σ[3])
βδθγθε∂δ

]
(6.8)

=k
[
xb(σab)

β
α + xaδ

β
α

]
∂β −

1

2
k
[
xb(σabσ

c)αβ + xa(σ
c)αβ

]
θβ∂c

+ kθβθγ
[
k1(σa)αβδ

δ
γ + k2(σ

[3])βγ(σaσ[3])
δ
α

]
∂d (6.9)

=k
[
xb(σab)

β
α + xaδ

β
α

]
∂β −

1

2
k
[
xb(σcab)αβ − xb(σb)αβδ c

a + xc(σa)αβ + xa(σ
c)αβ

]
θβ∂c

+ kθβθγ
[
k1(σa)αβδ

δ
γ + k2(σ

[3])βγ(σa[3])
δ
α + 3k2(σa[2])βγ(σ

[2]) δ
α

]
∂δ (6.10)

Consider the first two terms in [Qα, Ka] and k(σa)αβS
β. Notice that δ β

α and (σab)
δ
α are linearly

independent. Hence k = c1 = c2. Next, notice that there is no term with three θ’s in k(σa)αβS
β,

and recall that (σ c
ab )[γδ(σ

b)β]α 6= 0. Thus, we conclude that c3 = 0. Now consider and compare

the coefficients of ∂c. Notice that (σ c
ab )αβ and (σc)αβ are linearly independent. Thus, we obtain

2c3 − 1
2
c2 = −1

2
k and 1 + 1

2
c1 = −1

2
k. Since c3 = 0 and c1 = c2 = k, we have k = c2 = c1 = −1.

Finally, we look at the coefficients of ∂δ.

− 1

2
(σa)α[βδ

δ
γ] +

1

64
(σ[3])βγ(σa[3])

δ
α −

5

64
(σa[2])βγ(σ

[2]) δ
α (6.11)

= k1(σa)α[βδ
δ
γ] + k2(σ

[3])βγ(σa[3])
δ
α + 3k2(σa[2])βγ(σ

[2]) δ
α (6.12)

From the Appendix (A.14), we have

(σa)α[βδ
δ
γ] =

1

32
(σa[2])βγ(σ

[2]) δ
α +

1

96
(σ[3])βγ(σa[3])

δ
α (6.13)

Thus, we obtain

−
(
k1 +

1

2

)[
1

32
(σa[2])βγ(σ

[2]) δ
α +

1

96
(σ[3])βγ(σa[3])

δ
α

]
(6.14)

=

(
k2 −

1

64

)
(σ[3])βγ(σa[3])

δ
α +

(
3k2 +

5

64

)
(σa[2])βγ(σ

[2]) δ
α (6.15)

=⇒
(
−k1

1

96
− k2 +

1

96

)
(σ[3])βγ(σa[3])

δ
α =

(
3k2 +

3

32
+ k1

1

32

)
(σa[2])βγ(σ

[2]) δ
α (6.16)

Recall that (σ[3])βγ(σa[3])
δ
α and (σa[2])βγ(σ

[2]) δ
α are linearly independent. Thus, their coefficients

must be equal to zero. The LHS gives 96k2 + k1 = 1, but the RHS gives 96k2 + k1 = −3. This is a

contradiction. Therefore, ∀k ∈ C : [Qα, Ka] 6= k(σa)αβS
β �X

We have shown that superconformal vector fields does not exist in 10D.
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7 Discussion and Conclusion

Our result actually agrees with the mathematical analysis of Shnider (1988, 4) which states that

superconformal algebra does not exist in even dimensions d > 6. Notice that the proof we presented

in the previous section actually relies on some Fierz identities listed in the Appendix. This suggests

that these identities are actually determined by the dimension of spacetime in an interesting way

such that the superalgebra will not exist in odd dimensions.

Further calculations seem to imply that a more general expression of Sα under fewer restrictive

assumptions still fails to satisfy {Sα, Sβ} = k(σa)αβKa. For instance, we claim that any fermionic

vector field Sα with units of
√
x will not satisfy {Sα, Sβ} = k(σa)αβKa. Since the essence of the

problem is already presented in the previous sections, we will not include the details of other proofs

for the non-existence of superconformal vector fields here.

A Appendix

Here are some 10D Fierz identities.

(σb)α[β(σab)
δ
γ] =

5

32
(σ[2]) δ

α (σa[2])βγ −
1

32
(σa[3])

δ
α (σ[3])βγ (A.1)

(σ[3]σa) (α
γ (σ[3])

β)δ = −3(σb)
αβ(σab) δ

γ +
1

8
(σa[4])αβ(σ[4])

δ
γ − 45(σa)αβδ δ

γ (A.2)

(σa[3]) α
[δ (σ[3])β]γ = −1

2
(σ[3])δβ(σa[3]) α

γ (A.3)

(σa[3])
[α
δ (σ[3])

β]γ = −1

2
(σ[3])

αβ(σa[3]) γ
δ (A.4)

(σcdeσab)
[βα] = 2ηc[b(σa]de)

αβ − 2ηd[b(σa]ce)
αβ + 2ηe[b(σa]cd)

αβ (A.5)

(σabσcde)[αβ] = 2ηc[a(σb]de)βα − 2ηd[a(σb]ce)βα + 2ηe[a(σb]cd)βα (A.6)

(σ[3]σabc)
(α
γ (σ[3])β)δ = 3(σd)

αβ(σabcd) δ
δ +

3

2
(σabc[2])αβ(σ[2])

δ
γ − 9(σ[a)αβ(σbc]) δ

γ −
3

2
(σ[3][ab)αβ(σ

c]
[3])

δ
γ

(A.7)

(σa[2])β[γ(σ[2])
α
δ] = −1

2
(σ[2])

α
β (σa[2])γδ (A.8)

(σ[3])α[β(σ[3])γ]δ = −1

2
(σ[3])βγ(σ[3])αδ (A.9)

[σab, σcd] = −4ηb[cσd]a + 4ηa[cσd]b (A.10)
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(σc)α[β(σabc)γ]δ =
3

8
(σabc)βγ(σc)αδ −

1

4
(σcd[a)βγ(σ

b]
cd)αδ −

1

48
(σ[3])βγ(σ

ab[3])αδ (A.11)

(σa[2])α[β(σb[2])γ]δ =
7

4
(σabc)βγ(σc)αδ −

1

24
(σ[3])βγ(σ

ab[3])αδ −
1

4
(σa[2])βγ(σ

b
[2])αδ −

1

4
(σb[2])βγ(σ

a
[2])αδ

(A.12)

(σab[3])α[β(σ[3])γ]δ = −21

4
(σabc)βγ(σc)αδ +

3

2
(σ[2][a)βγ(σ

b]
[2])αδ −

3

8
(σ[3])βγ(σ

ab[3])αδ (A.13)

(σa)αβδ
δ
γ =

1

16
(σa)βγδ

δ
α +

1

16
(σb)βγ(σab)

δ
α +

1

32
(σa[2])βγ(σ

[2]) δ
α +

1

96
(σ[3])βγ(σa[3])

δ
α +

1

384
(σa[4])βγ(σ

[4]) δ
α

(A.14)
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