813nm Magic Wavelength Trapping for Strontium Atom

Tang Hin Fung

- Continuous Bose Einstein Condensation
- Observe wave nature of atoms by cooling down the atoms
- Continuous: atom laser
- Goal: cool down as many as atoms possible

Cooling on Sr Atoms

- Absorb photon to excite
- Atom slows down due to momentum change from photon
- Atom in excited state spontaneous decay
- Random direction
- Overall momentum change from scattering is balanced

Precision Spectroscopy of Cold Strontium Atoms, Towards Optical Atomic Clock

• ${}^{1}S_{0} - {}^{3}P_{1}$ transition (689*nm*)

Light Shift on Two States

- Induce different trapping potential on the two cooling states
- Reduce cooling efficiency

Solution for Different Potential

- Solution: make the potential the same
- Magic Wavelength: induce the same potential for two states
- 813nm (through calculation)

Requirement for Magic Wavelength Beam

• High power: $U \propto I$

Potential Intensity

• High power on normal laser: damage optical coating

Requirement for Magic Wavelength Beam

- Solution: Tapered Amplifier (TA)
- Larger cross section area \rightarrow smaller intensity \rightarrow protect optical coating

Difficulty on Seeding Power?

- Available input power: ~3.5mW
- Solution: Slave laser Seeding a higher power laser diode with a source.

Recommended Operational Conditions					
	Symbol	Unit	min	typ	max
Operational Temperature at Case	Tc	°C	5		40
Forward Current	I _F	А			4.0
Input Power	Pinput	mW	10		50
Output Power	Popt	W			2.0

Slave Laser – Injection Lock

- Isolator
 - light cannot pass back from transmitted path
 - ensure same polarization for seeding
- Temperature: 23°C
 - Lower temperature, closer to 813nm
 - Further low temperature may cause dews
- Port 1: seeding port (~3.5mW)
- Port 2: Output for TA Seeding
- Port 3: fabry-perot cavity (check injection lock)

L820P100 Specifications						
	Symbol	Min	Typical	Max		
Center Wavelength @ P _{op}	λο	808 nm	820 nm	828 nm		
Output Power, CW	Pop	-	100 mW	-		
Threshold Current	I _{TH}	-	40 mA	70 mA		
Operating Current CW @ Pop	I _{op}	-	145 mA	210 mA		

Slave Laser – Injection Lock

Seeding Power: 2.35mW

Single mode current range (mA)

45(threshold) - 100

114 - 121.5

Seeding Power (mW)	Single Mode Current Range (mA)	Power after Isolator(mW)			
2.87	114 - 121.5	56			
2.03	114.5 - 121	56			
1.03	114.5 - 121	55.8			
0.75	116.5 - 121	56			
0.525	118 - 121.3	55.6			
0.255	118.5 - 121.9	55.4			
0.106	118.5 - 121.5	55.4			
Lowest possible seeding power = 0.1mW					

Efficiency for the Output to TA Seeding

- Fibre coupling efficiency for TA seeding
 - = **31.33**/55
 - = 56.96%

- Low fibre coupling efficiency mainly due to bad beam shape
- TA seeding power: 31.33mW

TA Box Design

- Heat sink on the wall
 - reduce direct heat to the table
- Three ball holder design
 - Thermal insulation
- Open holes on the sides of the box
 - Tunable alignment
- Common ground for the whole holder
 - avoid shorting when putting screw driver for adjustment

Optical Setup & TA Assemble

Follow Up & Bugs

Temperature not stable

- Large box
- Thermistor and TEC are far away
- time difference in sensing the heat and responding the heat
- Solution: put thermistor closer to TEC
- Different beam focus for different axis
 - Astigmatism
 - One of the beam axis expand too fast
 - Lens cannot cover the whole beam
 - Solution:

put a post to hold the lens with smaller focus length inside the box

Acknowledgement

- Prof. Florian Schreck (UvA)
- Junyu He
- Prof. Dajun Wang (CUHK)

Thank You