Patched roughness in highly turbulent Taylor-Couette flow

Dominic Tai Ngan Cheung Supervised by Dennis Bakhuis¹

¹*Physics of Fluids Group, University of Twente, The Netherlands*

Turbulence

- Irregular
- Seemingly random
- Chaotic

Taylor-Couette Flow

- Fluid flow between two coaxial cylinders
- Important parameters:

$$a = -\frac{\Omega_2}{\Omega_1}$$

 $Ta = \frac{centrifugal forces}{viscous forces} \\ = \frac{1}{4} \left(\frac{1+\eta}{2\sqrt{\eta}} \right)^4 \left(\frac{R_2^2 - R_1^2}{\nu} \right)^2 (\Omega_1 - \Omega_2)^2 \\ \text{where } \eta = \frac{R_1}{R_2}$

Twente Turbulent Taylor-Couette (T³C)

 $\eta = 0.716$

~1m

~0.56m

Maximum rotation frequency: 20Hz

Torque and Temperature sensors

What we want to study

- Infinitely long TC facility with periodic roughness pattern of different period
- Inner cylinder
 - Finite
 - Top and bottom plates
 - Composed of three parts

What we want to study

- Roughness coverage on the middle cylinder is kept constant ${\sim}56\%$

What we measured

- Nusselt number
 - Angular velocity fluxNon-dimensional torque
- Velocity Profile
 - ≻Laser Doppler Anemometer (LDA) vertical profile of velocity in \$\hftarrow\$ and \$\hfcar{z}\$ direction
 ≻Particle Image Velocimetry (PIV)
 2D velocity field at fixed height (\$\hftarrow\$ and \$\hfcar{r}\$ direction)

The Project is still ongoing.....

Questions?!

 \odot Thank you for paying attention \odot