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▪ Facilities for Rare Isotope Beams

▪Nuclear physics user facility operated by Michigan State University

▪ Formerly National Superconducting Cyclotron Laboratory (NSCL)

FRIB
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▪ It accelerates and produces rare isotope

A short tour to NSCL
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▪Experiment Performed in Active-Target Time Projection 
Chamber (AT-TPC) at the National Superconducting Cyclotron 
Laboratory (NSCL)

▪ Fusion-fission reaction 

▪Study fission properties of exotic nuclei near lead region

The experiment

H. T. Wong, Fission Machine Learning Project, Slide 4

He
θ

82Se

114Cd

196Pb

He

He

He He



▪Since fission events occur with low probability (~3%), 
we need to filter out fission events from background events

▪ Filter out fission events using unsupervised machine learning method

Project Objective
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▪Point clouds are ordered
• Intrinsic order to input

• But we should have permutation invariance

• E.g. 
x y z

point 1 1 1 1
point 2 2 2 2
point 3 3 3 3

is same as

x y z
point 1 2 2 2
point 2 1 1 1
point 3 3 3 3

• Not all machine learning model can handle the invariance

Complications
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▪Need to map the point cloud into a feature space 

▪ The feature space is permutation invariant

▪Get the feature space from a pretrained network using PointNet
architecture

▪Pretrain????
• We have to set the weights of the model

• Can be done by train the model to do another task first

Solution: PointNet
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▪Pretraining task
• Train a model to perform jigsaw reconstruction task

▪ Jigsaw reconstruction task
• Divide chamber space into 63 (3*3*7) voxels

• Each point has a voxel number (0-62)

• Shuffle the voxels

• Train the model to
predict the true voxel
number

▪Why?
• Self-supervised

• The model learn how to
handle event point 
cloud data through the
training

Pretraining
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▪Models used: 

▪Cut method (non-machine learning, for reference)

▪One-class Support Vector Machine

▪K-means clustering

▪One-class Support Vector Machine + k-means clustering

Classifying model
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Point cloud -> feature space -> label (fission/non-fission)
PointNet Different classifying models



▪Non-machine learning

▪Classify fission events using “number of points” of event

▪Apply a 100-points cut

Cut method (1)
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▪Cut: 100 points
• Recall: 95%

• Precision: 93%

• F1: 94%

▪Recall: 
𝑇𝑃

𝑇𝑃+𝐹𝑁

▪Precision: 
𝑇𝑃

𝑇𝑃+𝐹𝑃

▪ F1: 2 ×
𝑅𝑒𝑐𝑎𝑙𝑙∙𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

Cut method (2)
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▪One-class Support Vector Machine (SVM)
• Detect abnormal events

• Fission events are rare. In principle, fission should be predicted -1

• One important hyperparameter: nu
» nu = percentage of events “outside the circle”

One-class SVM (1)

H. T. Wong, Fission Machine Learning Project, Slide 12

F
e

a
tu

re
 A

Feature B

+1
-1



▪Result:
• High recall (>98% for nu = 0.12)

• Low precision (~20% for nu = 0.12)
» vs ~3% before extraction

One-class SVM (2)
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▪ k-means clustering
• Classify events into different groups

• Set centroids

• Classify according to
closest centroid

• Hyperparameter: number of clusters

• Select groups that are mostly fission events

Clustering (1)
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▪Result
• High Precision

• Low Recall

• Not something we want

• Not a suitable model

• Why? Data imbalance:
fission events are much rare than
background

Clustering (2)
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▪One-class SVM model:
• High recall

• Low precision

▪K-means clustering model:
• Low recall

• High precision

▪Proposal: One-class SVM follow by k-means clustering
• Extracted events labeled “-1” in one-class SVM
» Fission events not as rare as before (~3% vs ~20%)

• Train with k-means clustering model on this subset of data

• Goal: high recall and high precision at the same time

One-class SVM + Clustering (1)
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▪ nu = 0.12, 16 clusters 
• F1: 83.5%, Recall: 84.2%, Precision: 82.8%

▪ nu = 0.12 one-class SVM only
• F1: 32.4%, Recall: 98.2%, Precision: 19.3%

One-class SVM + Clustering (2)
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▪Compared to one-class SVM model
• Improved precision

• But lower recall

One-class SVM + Clustering (3)
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▪Various models were used to do the classification task

▪Summary:

Conclusion (1)
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Model F1 Recall Precision

SVM1 0.32 0.98 0.19

Clustering2 0.42 0.28 0.80

SVM+Clustering3 0.84 0.84 0.83

Cut 0.94 0.95 0.93

1: nu = 0.12

2: 4 clusters

3: nu = 0.12, 16 clusters



▪ Unsupervised/self-supervised learning method can classify
fission events
• SVM model has high recall
»Although low precision (~20%), still better than before (~3%)

• No labeling need to be done

• A completely unrelated task (jigsaw reconstruction) was used to pretrain
the model

▪ Future work
• Use a different pretraining method

• Include more information (e.g. charge, number of hit) to the model
»We only used spatial coordinates

Conclusion (2)
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▪Questions?

The End
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