SURE: Exploring the relation between Lie algebra, Supersymmetry, and Adindra

Xiao Xiao
the Chinese University of Hong Kong
with Prof. Sylvester James Gates
Brown University

September 20th, 2018

Program:

Summer Student Theoretical physics Research Session (SSTPRS)

- Took place in June and last for a month.
- Mostly with US
undergraduate students.

About the program
Learn some knowledge before doing research:
Group theory, Lie algebra, Tensor analysis, Riemann geometry,
Supermultiplets

Research

Topic: Exploring the relation between Lie algebra, Supersymmetry, and Adindra

- Lie algebra
- Supermultiplets,
- Adinkra

Lie algebra: Special unitary group $\mathrm{SU}(2)$

SU(n) Group: $n \times n$ unitary matrices with determinant 1 .
su(2): Number of states: $N_{s u(2)}=2 j+1$
Pauli matrices $\left(j=\frac{1}{2}\right)$:
$\sigma_{1}=\sigma_{x}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$
$\sigma_{2}=\sigma_{y}=\left(\begin{array}{cc}0 & -i \\ i & 0\end{array}\right)$
Take $\left(\frac{1}{2} \sigma_{i}\right)$ to be the generators:
$\sigma_{3}=\sigma_{z}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$. Lie algebra:
$\left[\left(\frac{1}{2} \sigma_{i}\right),\left(\frac{1}{2} \sigma_{j}\right)\right]=i \epsilon_{i j k}\left(\frac{1}{2} \sigma_{k}\right)$

Weight space
The eigenvalues of $\frac{1}{2} \sigma_{3}$ form a weight space:

Figure 1: Weight space of su(2):

Lie algebra: Special unitary group SU(3)

SU(3): Number of states given by Weyl dimension formula:
$N_{s u(3)}=\frac{1}{2}(p+1)(q+1)(p+q+2)$
Gell-Mann matrices $(p=1, q=0)$:
$\lambda_{1}=\left(\begin{array}{ccc}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right), \quad \lambda_{2}=\left(\begin{array}{ccc}0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0\end{array}\right), \quad \lambda_{3}=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0\end{array}\right)$,
$\lambda_{4}=\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0\end{array}\right), \quad \lambda_{5}=\left(\begin{array}{ccc}0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0\end{array}\right)$,
$\lambda_{6}=\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right), \quad \lambda_{7}=\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0\end{array}\right), \quad \lambda_{8}=\frac{1}{\sqrt{3}}\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2\end{array}\right)$.
Let $\frac{1}{2} \lambda_{i}$ to be the generators:
Lie algbra: $\left[\left(\frac{1}{2} \lambda_{i}\right),\left(\frac{1}{2} \lambda_{j}\right)\right]=i f_{i j k}\left(\frac{1}{2} \lambda_{k}\right)$

Lie algebra: Special unitary group SU(3)

Weight space
Commuting matrices:
$\lambda_{3}=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0\end{array}\right)$
$\lambda_{8}=\frac{1}{\sqrt{3}}\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2\end{array}\right)$
$\left(\frac{1}{2} \lambda_{3}\right)|u\rangle=\frac{1}{2}|u\rangle$
$\left(\frac{1}{2} \lambda_{8}\right)|u\rangle=\frac{1}{2 \sqrt{3}}|u\rangle$

Figure 2: Weight space $\mathrm{p}=1$,
A pair of eigenvalues: $\mathrm{q}=0$
$\left(\frac{1}{2}, \frac{1}{2 \sqrt{3}}\right)$

Lie algebra: Special unitary group $\operatorname{SU}(3)$

Figure 3: $p=1, q=1$

Figure 4: $p=3, q=0$

Minimal On-shell Supermultiplets of 4D N=1

D_{a} : Supercovariant derivative: Bosons $\longleftrightarrow \rightarrow$ Fermions
Chiral supermultiplet $\left(A, B, \psi_{c}, F, G\right)$

$$
\begin{array}{lc}
\mathrm{D}_{a} A=\psi_{a} & \mathrm{D}_{a} B=i\left(\gamma^{5}\right)_{a}^{b} \psi_{b} \\
\mathrm{D}_{a} \psi_{b}=i\left(\gamma^{\mu}\right)_{a b} \partial_{\mu} A-\left(\gamma^{5} \gamma^{\mu}\right)_{a b} \partial_{\mu} B-i C_{a b} F+\left(\gamma^{5}\right)_{a b} G \tag{1}\\
\mathrm{D}_{a} F=\left(\gamma^{\mu}\right)_{a}^{b} \partial_{\mu} \psi_{b} \quad \mathrm{D}_{a} G=i\left(\gamma^{5} \gamma^{\mu}\right)_{a}^{b} \partial_{\mu} \psi_{b}
\end{array}
$$

Vector supermultiplet $\left(A_{\mu}, \lambda_{c}, d\right)$

$$
\begin{align*}
\mathrm{D}_{a} A_{\mu} & =\left(\gamma_{\mu}\right)_{a}{ }^{b} \lambda_{b} \quad \mathrm{D}_{a} d=i\left(\gamma^{5} \gamma^{\mu}\right)_{a}{ }^{b} \partial_{\mu} \lambda_{b} \tag{2}\\
\mathrm{D}_{a} \lambda_{b} & =-i \frac{1}{4}\left(\left[\gamma^{\mu}, \gamma^{\nu}\right]\right)_{a b}\left(\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}\right)+\left(\gamma^{5}\right)_{a b} d
\end{align*}
$$

Tensor supermultiplet ($\varphi, B_{\mu \nu}, \chi_{c}$)

$$
\begin{gather*}
\mathrm{D}_{a} \varphi=\chi_{a} \quad \mathrm{D}_{a} B_{\mu \nu}=-\frac{1}{4}\left(\left[\gamma_{\mu}, \gamma_{\nu}\right]\right)_{a}{ }^{b} \chi_{b} \\
\mathrm{D}_{a} \chi_{b}=i\left(\gamma^{\mu}\right)_{a b} \partial_{\mu} \varphi-\epsilon_{\mu}{ }^{\rho \alpha \beta}\left(\gamma^{5} \gamma^{\mu}\right)_{a b} \partial_{\rho} B_{\alpha \beta} \tag{3}
\end{gather*}
$$

They all satisfy the supersymmetry algebra

$$
\begin{equation*}
\left\{\mathrm{D}_{a}, \mathrm{D}_{b}\right\}=i 2\left(\gamma^{\mu}\right)_{a b} \partial_{\mu} \tag{4}
\end{equation*}
$$

Figure 5: Supermultiplets: Chiral, Vector, Tensor

A tetrahedral appears

Supersymmetry algebra: $\left\{D_{a}, D_{b}\right\}$
Define holoraumy tensor: $\left[D_{a}, D_{b}\right] \mathcal{F}_{c} \equiv\left[H^{\mu(R)}\right]_{a b c}{ }^{d}\left(\partial_{\mu} \mathcal{F}_{d}\right)$, where \mathcal{F} is the fermionic field.

For 4D, $N=1$ minimal supermultiplets:

$$
\begin{aligned}
{\left[\boldsymbol { H } ^ { \mu } \left(p_{(\mathcal{R})},\right.\right.} & \left.\left.q_{(\mathcal{R})}, r_{(\mathcal{R})}, s_{(\mathcal{R})}\right)\right]_{a b c}{ }^{d}=-i 2\left[p_{(\mathcal{R})} C_{a b}\left(\gamma^{\mu}\right)_{c}{ }^{d}+q_{(\mathcal{R})}\left(\gamma^{5}\right)_{a b}\left(\gamma^{5} \gamma^{\mu}\right)_{c}{ }^{d}\right. \\
& \left.+r_{(\mathcal{R})}\left(\gamma^{5} \gamma^{\mu}\right)_{a b}\left(\gamma^{5}\right)_{c}{ }^{d}+\frac{1}{2} s_{(\mathcal{R})}\left(\gamma^{5} \gamma^{\nu}\right)_{a b}\left(\gamma^{5}\left[\gamma_{\nu}, \gamma^{\mu}\right]\right)_{c}{ }^{d}\right]
\end{aligned}
$$

$(\widehat{\mathcal{R}})$	$\mathrm{p}_{(\mathcal{R})}$	$\mathrm{q}_{(\mathcal{R})}$	$\mathrm{r}_{(\mathcal{R})}$	$\mathrm{s}_{(\mathcal{R})}$
(CS)	0	0	0	1
(VS)	1	1	1	0
(TS)	-1	1	-1	0

$$
(C S)=(0,0,0,1)
$$

0-brane reduction: Only time dependent

Figure 6: Lorentz transformation to the time axis

0-brane reduction: Adinkra

Example: Chiral Supermultipet

$$
\begin{array}{llll}
\mathrm{D}_{1} A=i \Psi_{1} & \mathrm{D}_{2} A=i \Psi_{2} & \mathrm{D}_{3} A=i \Psi_{3} & \mathrm{D}_{4} A=i \Psi_{4} \\
\mathrm{D}_{1} B=-i \Psi_{4} & \mathrm{D}_{2} B=i \Psi_{3} & \mathrm{D}_{3} B=-i \Psi_{2} & \mathrm{D}_{4} B=i \Psi_{1} \\
\mathrm{D}_{1} F=i \partial_{0} \Psi_{2} & \mathrm{D}_{2} F=-i \partial_{0} \Psi_{1} & \mathrm{D}_{3} F=-i \partial_{0} \Psi_{4} & \mathrm{D}_{4} F=i \partial_{0} \Psi_{3} \\
\mathrm{D}_{1} G=-i \partial_{0} \Psi_{3} & \mathrm{D}_{2} G=-i \partial_{0} \Psi_{4} & \mathrm{D}_{3} G=i \partial_{0} \Psi_{1} & \mathrm{D}_{4} G=i \partial_{0} \Psi_{2}
\end{array}
$$

Figure 7: Transformation law after 0 brane reduction

Define

$$
\mathrm{D}_{I} \Phi_{i} \equiv i\left(L_{I}\right)_{i \hat{k}} \Psi_{\hat{k}} \quad \mathrm{D}_{I} \Psi_{\hat{k}} \equiv\left(R_{I}\right)_{\hat{k i}} \partial_{0} \Phi_{i}
$$

$$
\left(\mathrm{L}_{1}\right)_{i \hat{k}}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0
\end{array}\right]
$$

(a) Adinkra of (CS)

Projects currently working on

- Examination of Holoraumy Tensors for 4D, $\mathcal{N}=1$ On-shell Supermultiplets (Matter-Gravitino, Supergravity)
- SU(3) anticommutators
- Deformed adinkras
- Casimir project

Project: Deformed Adinkras

Define

$$
\mathrm{D}_{I} \Phi_{i} \equiv i\left(L_{I}\right)_{i \hat{k}} \Psi_{\hat{k}} \quad \mathrm{D}_{I} \Psi_{\hat{k}} \equiv\left(R_{I}\right)_{\hat{k} i} \partial_{0} \Phi_{i}
$$

Supersymmetry algebra in 4D: $\left\{D_{a}, D_{b}\right\}=i 2\left(\gamma^{\mu}\right)_{a b} \partial_{\mu}$ becomes Garden algebra after reduction:

$$
\begin{array}{ll}
L_{I} R_{J}+L_{J} R_{I}=2 \delta_{I J} \\
R_{J} L_{I}+R_{I} L_{J}=2 \delta_{I J} & R_{I}=\left(L_{I}\right)^{t}
\end{array}
$$

(a) Adinkra of (CS)

(b) Adinkra of (VS)

(c) Adinkra of (TS)
(1) Odd number of dashed lines.
(2) 12 cycles in total.

Project: Deformed Adinkras

Define fermionic holoraumy matrices:
$\tilde{V}_{I J}=\frac{1}{2}\left(L_{l}^{t} L_{J}-L_{J}^{t} L_{l}\right)$
Define a dot product (Gadget value) between different adinkras:
$\left.G: \mathcal{A} \times \mathcal{A} \rightarrow Q:\left(R, R^{\prime}\right) \mapsto-\frac{1}{4} \sum_{I, J} \operatorname{Tr}\left[\left(\tilde{V}_{I J}^{(R)}\right) \tilde{V}_{I J}^{\left(R^{\prime}\right)}\right)\right]$
Do dot product between any two adinkras (36,864 in total):

Gadget $_{(1)}$ Value	Count
$-1 / 3$	$127,401,984$
0	$1,132,462,080$
$1 / 3$	$84,934,656$
1	$14,155,776$

Project: Deformed Adinkras

1 odd-dashed cycles.png

Exactly 1 odd-dashed cycles

Project: Deformed Adinkras

2 odd-dashed cycles.png

Exactly 2 odd-dashed cycles

Project: Deformed Adinkras

3 odd-dashed cycles.png

Exactly 3 odd-dashed cycles

Project: Deformed Adinkras

4 odd-dashed cycles.png

Exactly 4 odd-dashed cycles

Project: Deformed Adinkras

5 odd-dashed cycles.png

Exactly 5 odd-dashed cycles

Project: Deformed Adinkras

6 odd-dashed cycles.png

Exactly 6 odd-dashed cycles

Project: Deformed Adinkras

7 odd-dashed cycles.png

Exactly 7 odd-dashed cycles

Project: Deformed Adinkras

8 odd-dashed cycles.png

Exactly 8 odd-dashed cycles

Project: Deformed Adinkras

10 odd-dashed cycles.png

Exactly 10 odd-dashed cycles

Project: Deformed Adinkras

12 odd-dashed cycles.png

Exactly 12 odd-dashed cycles

Project: Casimir project

su(3) algebra:

- Algebra:
$\left[\lambda_{i}, \lambda_{j}\right]=i i_{i j k} \lambda_{k}$
- Analogy of Holoraumy?: $\left\{\lambda_{i}, \lambda_{j}\right\}$
- Gadget value?
$\underline{\operatorname{Tr}\left(\left\{\lambda_{i}^{(R)}, \lambda_{j}^{(R)}\right\}\left\{\lambda_{j}^{\left(R^{\prime}\right)}, \lambda_{i}^{\left(R^{\prime}\right)}\right\}\right)}$

Supersymmetry algebra:

- Algebra:
$\left\{D_{a}, D_{b}\right\}=i 2\left(\gamma^{\mu}\right)_{a b} \partial_{\mu}$
- holoraumy tensor:
$\left[D_{a}, D_{b}\right] \mathcal{F}_{c} \equiv$
$\left[H^{\mu(R)}\right]_{a b c}{ }^{d}\left(\partial_{\mu} \mathcal{F}_{\boldsymbol{d}}\right)$
- Gadget value: inner product between holoraumy tensors

Project: Casimir project

Gadgets:

$$
\begin{aligned}
G_{1}\left(R, R^{\prime}\right) & =\operatorname{Tr}\left(\left\{\lambda_{i}^{(R)}, \lambda_{j}^{(R)}\right\}\left\{\lambda_{j}^{\left(R^{\prime}\right)}, \lambda_{i}^{\left(R^{\prime}\right)}\right\}\right) \\
& =\frac{1}{18}(p+1)(q+1)(p+q+2)\left(p^{2}+p q+3 p+q^{2}+3 q\right. \\
& \left(4 p^{2}+4 p q+12 p+4 q^{2}+12 q-9\right) \\
& =d C_{2}\left(4 C_{2}-3\right)
\end{aligned}
$$

where d is the Weyl dimension formula:

$$
d=\frac{1}{2}(p+1)(q+1)(p+q+2)
$$

and

$$
C_{2}=\frac{1}{3}\left(p^{2}+q^{2}+p q+3 p+3 q\right)
$$

is the eigenvalue of the quadratic casimir operator of su(3).

Project: Casimir project

Gadget value in su(3):
$\operatorname{Tr}\left(\left\{\lambda_{i}^{(R)}, \lambda_{j}^{(R)}\right\}\left\{\lambda_{j}^{\left(R^{\prime}\right)}, \lambda_{i}^{\left(R^{\prime}\right)}\right\}\right)$

$$
\begin{aligned}
G_{1}\left(R, R^{\prime}\right) & =\operatorname{Tr}\left(\left\{\lambda_{i}^{(R)}, \lambda_{j}^{(R)}\right\}\left\{\lambda_{i}^{\left(R^{\prime}\right)}, \lambda_{j}^{\left(R^{\prime}\right)}\right\}\right) \\
G_{2}(R, R) & =\operatorname{Tr}\left(\left\{\lambda_{i}^{(R)}, \lambda_{j}^{(R)}\right\}\left\{\lambda_{j}^{(R)}, \lambda_{k}^{(R)}\right\}\left\{\lambda_{k}^{(R)}, \lambda_{i}^{(R)}\right\}\right) \\
G_{3}(R, R) & =\operatorname{Tr}\left(\left\{\lambda_{i}^{(R)}, \lambda_{j}^{(R)}\right\}\left\{\lambda_{j}^{(R)}, \lambda_{k}^{(R)}\right\}\left\{\lambda_{k}^{(R)}, \lambda_{l}^{(R)}\right\}\left\{\lambda_{l}^{(R)}, \lambda_{i}^{(R)}\right\}\right) \\
G_{4}(R, R) & =\operatorname{Tr}\left(\left\{\lambda_{i}^{(R)}, \lambda_{j}^{(R)}\right\}\left\{\lambda_{j}^{(R)}, \lambda_{k}^{(R)}\right\}\left\{\lambda_{k}^{(R)}, \lambda_{l}^{(R)}\right\}\left\{\lambda_{l}^{(R)}, \lambda_{p}^{(R)}\right\}\left\{\lambda_{p}^{(R)}, \lambda_{i}^{(R)}\right\}\right)
\end{aligned}
$$

$N(p, q)$	p	q	$G_{1}(R, R)$	$G_{2}(R, R)$	$G_{3}(R, R)$	$G_{4}(R, R)$	$G_{5}(R, R)$
1	0	0					
3	1	0	$\frac{28}{3}$	$\frac{53}{9}$	$\frac{371}{54}$	$\frac{548}{81}$	$\frac{1918}{23}$
6	2	0	$\frac{620}{3}$	$\frac{7225}{9}$	$\frac{238555}{54}$	$\frac{3534995}{162}$	$\frac{55836715}{4}$
8	1	1	216	702	3429	$\frac{28971}{2}$	$\frac{269109}{4}$
10	3	0	1260	11475	$\frac{244755}{2}$	$\frac{2549205}{2}$	$\frac{26814375}{2}$
15	2	1	$\frac{4400}{3}$	$\frac{102820}{9}$	$\frac{288587}{27}$	$\frac{78479740}{81}$	$\frac{2164403930}{243}$
15^{\prime}	4	0	$\frac{14420}{3}$	$\frac{680575}{9}$	$\frac{70507465}{54}$	$\frac{1810851910}{81}$	$\frac{93292782800}{243}$
21	5	0	$\frac{42280}{3}$	$\frac{3007550}{9}$	$\frac{22768385}{27}$	$\frac{17170978790}{81}$	$\frac{1296549205630}{243}$
24	3	1	$\frac{18200}{3}$	$\frac{750250}{9}$	$\frac{34391525}{27}$	$\frac{311885825}{162}$	$\frac{2839731325}{972}$
27	2	2	6264	81918	1197531	17297982	250983144

Project: Casimir project

Gadget value in su(3):
$\operatorname{Tr}\left(\left\{\lambda_{i}^{(R)}, \lambda_{j}^{(R)}\right\}\left\{\lambda_{j}^{\left(R^{\prime}\right)}, \lambda_{i}^{\left(R^{\prime}\right)}\right\}\right)$

$$
\begin{aligned}
G_{1}\left(R, R^{\prime}\right) & =\operatorname{Tr}\left(\left\{\lambda_{i}^{(R)}, \lambda_{j}^{(R)}\right\}\left\{\lambda_{i}^{\left(R^{\prime}\right)}, \lambda_{j}^{\left(R^{\prime}\right)}\right\}\right) \\
G_{2}(R, R) & =\operatorname{Tr}\left(\left\{\lambda_{i}^{(R)}, \lambda_{j}^{(R)}\right\}\left\{\lambda_{j}^{(R)}, \lambda_{k}^{(R)}\right\}\left\{\lambda_{k}^{(R)}, \lambda_{i}^{(R)}\right\}\right) \\
G_{3}(R, R) & =\operatorname{Tr}\left(\left\{\lambda_{i}^{(R)}, \lambda_{j}^{(R)}\right\}\left\{\lambda_{j}^{(R)}, \lambda_{k}^{(R)}\right\}\left\{\lambda_{k}^{(R)}, \lambda_{l}^{(R)}\right\}\left\{\lambda_{l}^{(R)}, \lambda_{i}^{(R)}\right\}\right) \\
G_{4}(R, R) & =\operatorname{Tr}\left(\left\{\lambda_{i}^{(R)}, \lambda_{j}^{(R)}\right\}\left\{\lambda_{j}^{(R)}, \lambda_{k}^{(R)}\right\}\left\{\lambda_{k}^{(R)}, \lambda_{l}^{(R)}\right\}\left\{\lambda_{l}^{(R)}, \lambda_{p}^{(R)}\right\}\left\{\lambda_{p}^{(R)}, \lambda_{i}^{(R)}\right\}\right)
\end{aligned}
$$

We also found that G_{2}, G_{3}, G_{4} are all poportional to the polynomial of C_{2}.

$$
\begin{aligned}
& \hat{C}_{2}=\lambda_{i} \lambda_{i} \\
& \hat{C}_{3}=d_{i j k} \lambda_{i} \lambda_{j} \lambda_{k}
\end{aligned}
$$ Starting from G5, no more polynomial of C_{2} can be found.

Analytically derivation:
$\lambda_{i} \ldots \lambda_{j} \ldots \lambda_{j} \ldots \lambda_{i} \ldots \propto$ Identity matrix, using commutator relation to swap the order.

What to do next

- Check the fermonic holoraumy matrices of MGM and SG supermultiplet belong to what group.
- Investigate the relation between the gadget value and the dashed cycle condition.
- Find the explicit formula for the eigenvalues of the possible "new" casimir operator.

Reference

- S.N.Mak, S.J.Gates, "Finding the Roots of Supersymmetry", poster.
- "On the Four Dimensional Holoraumy of the 4D, $N=1$ Complex Linear Supermultiplet" . International Journal of Modern Physics AVol. 33, No. 12, 1850072 (2018).
- "Adinkras from ordered quartets of BC4 Coxeter group elements and regarding 1,358,954,496 matrix elements of the Gadget". High Energ. Phys. (2017).

Thank you

Q \& A

