From Dark Matter to Galaxies with Convolutional Neural Networks

Jacky H. T. Yip

CUHK Physics Student Conference

21st September 2019

advisor: Shirley Ho

Today's outline

- Motivation: Why the mapping; why convolutional networks?
- Method
 - Data: Problem with sparsity
 - Cascade model
- Result
- Conclusion and future work

from cosmological <u>surveys</u> e.g. LSST, SDSS from cosmological <u>simulations</u> e.g. IllustrisTNG

Hubble Space Telescope

IllustrisTNG (cosmological simulation)

credit: Illustris Collaboration

Motivation – What are these simulations?

For state-of-the-art IllustrisTNG simulations:

- Evolving particles from soon after the big bang (z=127) until present day
 - ~10¹⁰ particles (dark matter, baryons)
 - Volume of $(\sim 10^2 \text{ Mpc/h})^3$
 - Full physics: gravity, magneto-hydrodynamics...
- Extremely computationally expensive!
 - 19 million CPU hours (Illustris-1)

Motivation – What are these simulations?

For state-of-the-art IllustrisTNG simulations:

- Instead of full-hydro sims with all matters, consider dark-matter-only sims
- Gravity-only N-body sims
 - Computationally cheaper!

Motivation – What if?

Input

Machine learning

Convolutional neural networks (CNNs)

Target

from dark-matter-only N-body sims (cheaper) from full-hydrodynamical sims (very expensive)

credit: Illustris Collaboration

Motivation – Why CNNs?

credit: towardsdatascience.com/basics-of-the-classic-cnn-a3dce1225add

Motivation – Why CNNs?

- CNNs are used in image classification and segmentation
 - Capture local information
 - Translational invariant
- Galaxies form as baryonic matter collapses in dark matter halos
 - Expect to depend on local properties of the dark matter halos
 - Independent on the galaxy's absolute position

Today's outline

- Motivation: Why the mapping; why convolutional networks?
- Method
 - Data: Problem with sparsity
 - Cascade model
- Result
- Conclusion and future work

Input

Target

Dark matter mass density

Galaxy number density

Target galaxy number density

- Highly sparse: only 0.15% of voxels have galaxies
- Problem: Hard to regress; predicting zero galaxy in all voxels still results in 99.85% accuracy!

Method – Cascade model

Cascade model of two phases:

• 1st phase: Binary classification

- Inception Network
- Classify whether a voxel has a galaxy or not (empty or not)
- Successfully reduces the sparsity by ~50 times effectively

Method – Cascade model

Cascade model of two phases:

2nd phase: Regression model (masked by 1st phase's prediction)

Recurrent Residual U-net

Today's outline

- Motivation: Why the mapping; why convolutional networks?
- Method
 - Data: Problem with sparsity
 - Cascade model
- Result
- Conclusion and future work

Result – Benchmark model: HOD

Halo Occupation Distribution (HOD) model

- Commonly used in the cosmological community to link dark matter halos and galaxies
- Identifies halo-mass-related-only parameters to determine the number of galaxies that a dark matter halo holds, then randomly place them within a radius inside the halo

Result – Visualizations Input Target (Galaxies/TNG300-1)

Result – Visualizations Input Target (Dark Matter/TNG300-1-Dark) (Galaxies/TNG300-1)

Result – Power spectra

 10^{4} Fourier transform of the Cascade model correlation function: HOD Target (TNG300-1) $\xi(|\boldsymbol{r}|) = \langle \delta_A(\boldsymbol{r'}) \delta_B(\boldsymbol{r'} + \boldsymbol{r}) \rangle$ P(k) [(Mpc/h)³] P(k) Reference shot noise $P(|\boldsymbol{k}|) = \int \mathrm{d}^3 \boldsymbol{r} \, \xi(\boldsymbol{r}) e^{i \boldsymbol{k} \cdot \boldsymbol{r}}$ Accounts for the deviation of the galaxy 10^{1} distribution from a random field at different scale k 10^{-1} 10⁰ 10^{1} k [h/Mpc]

Conclusion and future work

- Our cascade model can efficiently predict the galaxy number density field given only the dark matter density field
 - Outperforms benchmark method in statistics of interest
- Extensions / on-going work
 - Predict additional properties of galaxies: mass, galaxy formation rate, metallicity... etc
 - Explore more environmental factors in the dark matter field: velocity... etc

Thank you, CUHK Physics & Shirley!

THE CHINESE UNIVERSITY OF HONG KONG

Department of Physics

Summer Undergraduate Research Exchange Program (SURE)

First phase: Inception Network

Second phase: Recurrent Residual U-net

24

Halo Occupation Distribution (HOD) Model

1) Read all the positions and radii of the halos

2) If it has a central galaxy (if $M > M_{min}$), put it in the center of the halo

3) Compute the mean number of satellites in the halo as (M/M1)^{alpha}

4) Given that number, draw a random number with a Poissonian distribution with that mean. That will be the number of satellites of that particular halo. Place them randomly within the radius of the halo

