Piezoelectric Actuators Shaking an Optical Lattice at the high-frequency regime in a Cold Atom Experiment

Motivation

$$\begin{split} \hat{H}(\tau) &= \frac{\hat{p}}{2m} + V_{lat}(\hat{x}) - F(\tau)\hat{x} \\ \hat{H} &= -t \sum_{\langle \boldsymbol{j}, \boldsymbol{l} \rangle \sigma} (c^{\dagger}_{\boldsymbol{j}\sigma} c_{\boldsymbol{l}\sigma} + c^{\dagger}_{\boldsymbol{l}\sigma} c_{\boldsymbol{j}\sigma}) - F(\tau) \sum_{i} ia\hat{n}_{i} \\ &= -t \sum_{\langle \boldsymbol{j}, \boldsymbol{l} \rangle \sigma} (c^{\dagger}_{\boldsymbol{j}\sigma} c_{\boldsymbol{l}\sigma} + c^{\dagger}_{\boldsymbol{l}\sigma} c_{\boldsymbol{j}\sigma}) - \hbar\omega_{lat} K_{0} sin(\omega_{lat}) \sum_{i} ia\hat{n}_{i} \end{split}$$

(Sandra Buob, 2018)

Equipment and Design:

Steel Mount

• Piezo actuator (-mirror mount)

FRONT VIEW

FRONT VIEW

H = 2 cm, h = 0.5 cm, D = 2.5 cm, d = 1.26 cm.

FRONT VIEW

Equipment and Design:

• Piezo controller

	Noliac	Tripod	Ring
Model	NAC2013	NAC2012(\times 3)	NAC2121
Shape	square	$3 \times \text{square}$	ring
$\operatorname{Dimensions}(\operatorname{mm})$	$5 \times 5 \times 2$	$3 \times 3 \times 2$	$6-2 \times 2$
Capacitance (nF)	190	65(each)	105
Voltage range (V)	$0 \sim 150$	$0 \sim 150$	$0 \sim 200$
Max Stroke (μm)	3.3	3.3	3.3
Stiffness $(N/\mu m)$	318	115	321

 $I_{rms} = \frac{VppC\pi f}{\sqrt{2}}$

Equipment and Design:

Performance:

- frequency response
- the maximum expansion
- the static steering-errormicromotion

(a) Noliac with $\Phi = 25mm$, m = 6.80g

(b) Ring with $\Phi = 12.5mm$, m = 1.68g

(c) Square with $\Phi = 7.0mm$, m = 0.18g

Frequency response

Frequency response

Square actuator with $\Phi = 7.0mm$

• Maximum displacement

• Static steering error

Micro-motion

• Micro-motion

- Fix the model
- Consider a offset independent method
- Figure out the source of other harmonics
- Expand the measurement of micromotion to higher frequencies, and figure out why two axes have different resonances
- Measure the static steering error, compare it with the micromotion and find a method to solve it (maybe by the composition of lenses)
- Build the tripod piezo

Reference:

- T. C. Briles, D. C. Yost, A. Cing^ooz, J. Ye, and T. R. Schibli, "Simple piezoelectric-actuated mirror with 180 kHz servo bandwidth," Opt. Express 18(10), 9739–9746 (2010).
- Sandra Buob, Characterization of Piezoelectric Actuators to Shake an Optical Lattice in a Cold Atom Experiment (2018)